Course Title: Engineering Physics for CSE stream 50 Course Code: **CIE Marks** 22PHYS12/22 50 SEE Marks Course Type (Theory/Practical) Theory 100 **Total Marks** 03 Exam Hours Teaching Hours/Week (L+T) 3 Credits 03 Total Hours of Pedagogy 40 hrs

Course objectives

- To study the essentials of Lasers and Optical fibers for engineering applications.
- To study the principles of quantum mechanics and its application in quantum computing.
- To study the electrical properties of materials especially superconductors.
- To study the essentials of physics for computational aspects like design and data analysis.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes andmake Teaching –Learning more effective

- 1. Flipped Class
- 2. Smart Class Room
- 3. Blended Mode of Learning
- 4. Interactive Simulations and Animations
- 5. Assignments based learning
- 6. NPTEL and Other Videos for theory topics
- 7. Lab Experiment Videos

Module-1 (8 Hours)

Laser and Optical Fibers:

LASER : Basic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients, Laser Action & Numerical Problems, Population Inversion, Metastable State, Requisites of a laser system, Types of Lasers, Semiconductor Diode Laser, Applications: Bar code scanner, Laser Printer, CD writing/reading.

Optical Fiber: Principle and structure, Acceptance angle and Numerical Aperture (NA), Expression for NA (derivation) & Numerical Problems, Types of Optical Fibers, Attenuation and Fiber Losses & Numerical Problems, Applications of Optical Fibers: Local Area Network (LAN) and Fiber Optic Communication.

Pre requisite: Properties of light

Self-learning: Total Internal Reflection & Propagation Mechanism (Optical Fibers) Module-2 (8 Hours)

Quantum Mechanics:

Inadequacies of Classical Mechanics (Blackbody radiation & Photo electric effect), de Broglie Hypothesis and Matter Waves, de Broglie wavelength, Heisenberg's Uncertainty Principle and its application (Non existence of electron insidethe nucleus-Non Relativistic) & Numerical Problems, Wave Function, Physical Significance of a wave function, Time independent Schrodinger wave equation, Eigen functions and Eigen Values, Motion of a particle in a one dimensional potential well of infinite depth.

Pre requisite: Wave-Particle dualism;

Self-learning: de Broglie Hypothesis

Module-3 (8 Hours)

Electrical Conductivity in metals :

Electrical Conductivity in metals, Concept of Resistivity and Mobility, Numerical Problems on resistivity and mobility, Assumptions and failures of Classical Free Electron Theory, Assumptions and success of Quantum Free Electron Theory, Fermi Energy (Qualitative).

Scanned with OKEN Scanner

Superconductivity :

Introduction to Super Conductors, Temperature dependence of resistivity, Meissner Effect, Critical Field, Temperature dependence of Critical field & Numerical Problems, Types of Super Conductors, BCS theory (Qualitative), High Temperature superconductivity, Josephson Junctions(Qualitative), SQUIDs (Qualitative), Applications of superconductors - Maglev vehicle $\int Q u(t)$

Pre requisites: Basics of Electrical conductivity Self-learning: Resistivity and mobility

Module-4 (8 Hours)

Quantum Information & Quantum Computing:

Principles of Quantum Information & Quantum Computing: Introduction to Quantum Computing, Moore's law & its end. Single particle quantum interference, Differences between classical & quantum computing, concept of qubit and its properties. Representation of qubit by Bloch sphere. Single and Two qubits. Extension to N qubits.

Properties of a qubit: Mathematical representation. Summation of probabilities.

Dirac representation and matrix operations: Matrix representation of 0 and 1 states, Identity Operator I, Determination of I|0> and I|1>, Pauli Matrices and its operations on |0> and |1> states, Explanation of i) Conjugate of a matrix ii) Transpose of a matrix. Unitary Matrix U, Examples:Row and Column Matrices and their multiplication (Inner Product).

Pre requisites: Matrices Self-learning: Moore's law

Module-5 (8 Hours)

Quantum Gates & Physics of Animation :

Quantum Gates

Single Qubit Gates: Quantum Not Gate, Pauli -Z Gate, Hadamard Gate, Phase Gate (or S Gate), T Gate Multiple Qubit Gates: Controlled gate, CNOT Gate, (Discussion for 4 different input states). Representation of Swap gate, Controlled -Z gate, Toffoli gate.

Physics of Animation :

Taxonomy of physics based animation methods, Frames, Frames per Second, Size and Scale, Motion and Timing in Animations, Constant Force and Acceleration. The Odd rule, Odd rule Scenarios & Numerical Problems, Motion Graphs.

Pre requisites: Motion in one dimension

Self-learning: Frames, Frames per Second

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Lave

CO1	Describe the principles of LASERS and Optical fibers and their relevant applications.	
CO2	Summarize the essential properties of conductors and superconductors.	
CO3	Discuss the basic principles of the Quantum Mechanics.	
CO4	Discuss the basics of Quantum Computing and Quantum Gates	
CO5	Illustrate the application of physics in design and data analysis.	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are

The CIE marks for the theory component shall be 50 marks is as detailed below

- Three Tests each of 15 Marks; (Third test is improvement test).
- CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes)
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Solid State Physics, S O Pillai, New Age International Private Limited, 8th Edition, 2018,.
- 2. Engineering Physics by Gupta and Gour, Dhanpat Rai Publications, 2016 (Reprint).
- 3. Concepts of Modern Physics, Aurthur Beiser, McGrawhill, 6th Edition, 2009.
- 4. Lasers and Non Linear Optics, B B Loud, New age international, 2011 edition.
- 5. A text book of Engineering Physics by M .N. Avadhanulu, P G. Kshirsagar and T V S Arun Murthy, Eleventhedition, S Chand and Company Ltd. New Delhi-110055.
- Quantum Computation and Quantum Information, Michael A. Nielsen & Isaac L. Chuang, Cambridge 6. UniversitiesPress, 2010 Edition.
- Quantum Computing, Vishal Sahani, McGraw Hill Education, 2007 Edition. 7.
- 8. Engineering Physics, S P Basavaraj, 2005 Edition,
- Physics for Animators, Michele Bousquet with Alejandro Garcia, CRC Press, Taylor & Francis, 2016. 9. 10. Quantum Computation and Logic : How Quantum Computers Have Inspired Logical Investigations, Maria LuisaDalla Chiara, Roberto Giuntini, Roberto Leporini, Giuseppe Sergioli, TrendsinLogic, Volume 48, Springer.
- Statistical Physics : Berkely Physics Course, Volume 5, F. Reif, McGraw Hill. 11.

Web links and Video Lectures (e-Resources):

- Web links:
 - LASER : www.youtube.com/watch?v=WgzynezPiyc 1.
 - 2.
 - Superconductivity : https://www.youtube.com/watch?v=MT5XI5ppn48 Optical Fiber : www.youtube.com/watch?v=N kA8EpCUQo

- 4. Quantum Mechanics : https://www.youtube.com/watch?v=p7bzE1E5PMY&t=136s 5.
- Quantum Computing : https://www.youtube.com/watch?v=jHoEjvuPoB8 6.
- Physics of Animation : www.youtube.com/watch?v=kj1kaA_8Fu4 7.
- NPTEL Supercoductivity: https://archive.nptel.ac.in/courses/115/103/115103108/
- 8. NPTEL Quantum Computing : <u>https://archive.nptel.ac.in/courses/115/101/115101092</u>
- Virtual LAB: <u>https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham</u>
- 10. Virtual LAB : https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning http://nptel.ac.in

00

https://swayam.gov.in

https://virtuallabs.merlot.org/vl_physics. htmlhttps://phet.colorado.edu

https://www.myphysicslab.com

Course Title:	Engineering Physics for I	EEE Stream	
Course Code:	22PHYE12/22	CIE Marks	50
Course Type (Theory/Practical)	Theory	SEE Marks	50
		Total Marks	100
Teaching Hours/Week (L+T)	03	Exam Hours	03
Total Hours of Pedagogy	40 hrs	Credits	03

- To understand the properties of dielectrics and superconductors
- To study the principles of quantum mechanics.
- To understand fundamentals of vector calculus and EM waves.
- To study the knowledge about semiconductors and devices

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course

outcomes andmake Teaching -Learning more effective

- 1. Flipped Class
- 2. Smart Class Room
- 3. Blended Mode of Learning
- 4. Interactive Simulations and Animations
- 5. Assignments based learning
- 6. NPTEL and Other Videos for theory topics
- 7. Lab Experiment Videos

Module-1 (8 Hours)

Lasers: Characteristics of LASER, Interaction of radiation with matter, Expression for energy density of radiation and Numerical Problems, Requisites of a Laser system, Conditions for Laser action, Types of Lasers, Principle, Construction and working of Ga-As laser. Application of Lasers in Defence (Laser range finder) and Laser Printing.

Optical Fibers: Propagation mechanism, TIR, angle of acceptance, Numerical aperture and Numerical Problems on NA, fractional index change, Modes of propagation, Number of modes and V parameter and Numerical Problems, Types of optical fibers. Attenuation and Mention of expression for attenuation coefficient, Discussion of block diagram of point to point communication, Merits and demerits of optical fiber.

Pre requisite: Properties of light

Self-learning: Propagation Mechanism & TIR in optical fiber

Module-2 (8 Hours)

Dielectric Properties: Basic concepts of conductors, insulators and semiconductors, Polar and non-polar dielectrics, Types of Polarization, internal fields in solid, solid, liquid and gaseous dielectrics. Application of dielectrics in transformers, Capacitors.

Superconductivity:

Introduction to Superconductors, Temperature dependence of resistivity, Meissner Effect, Critical temperature, Types of Super Conductors, Temperature dependence of Critical field & Numerical Problems, BCS theory (Qualitative), High Temperature superconductivity, Applications of Superconductivity - SQUID, MAGLEV. Pre requisites: Difference between Insulators & Dielectrics. Self-learning: Dielectrics Basics

Quantum Mechanics:

Module-3 (8 Hours)

Inadequacies of Classical Mechanics (Blackbody radiation & Photo electric effect), de Broglie Hypothesis and Matter Waves, de Broglie wavelength, Heisenberg's Uncertainty Principle and its application (Non existence of electron inside the nucleus-Non Relativistic) & Numerical Problems, Wave Function, Time independent

Thanks Waager-

Schrodinger wave equation, Physical Significance of a wave function, Eigen functions and Eigen Values,

Motion of a particle in a one dimensional potential well of infinite depth.

Pre requisite: Wave-Particle dualism

Self-learning: de Broglie Hypothesis

Maxwell's Equations and EM waves:

Maxwell's Equations: Fundamentals of vector calculus. Divergence and curl of electric field and magnetic field (static) & Numerical Problems, Gauss' divergence theorem and Stoke's theorem, Faraday's laws of EMI, Current density & equation of continuity; displacement current (with derivation) Maxwell's equations in vacuum.

Module-4 (8 Hours)

EM Waves: Plane electromagnetic waves in vacuum, their transverse nature, Numerical problems.

Pre requisite: Electricity & Magnetism

Self-learning: Fundamentals of vector calculus.

Module-5 (8 Hours)

Semiconductor and Devices:

Fermi energy and Fermi factor, Variation of Fermi factor with temperature and energy & Numerical Problems, Fermi level in intrinsic semiconductors, Electrical conductivity of a semiconductor (derivation) & Numericals, Hall effect and mention its application, Photodiode and Power responsivity, Four probe method to determine resistivity, Photo transistor.

Pre requisite: Basics of Semiconductors

Self-learning: Solar cell

Course outcome (Course Skill Set) At the end of the course the student will be able to:

CO1	Discuss the essential concepts of Lasers and Optical fibers.
CO2	Elucidate the concepts of dielectrics and superconductivity.
CO3	Describe the fundamental principles of the Quantum Mechanics.
CO4	Discuss the fundamentals of vector calculus and their applications in Maxwell's Equations and EM Waves.
CO5	Summarize the properties of semiconductors and the working principles of semiconductor devices.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are

The CIE marks for the theory component shall be 50 marks is as detailed below

- Three Tests each of 15 Marks; (Third test is improvement test).
- CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes)
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.

1 Lavers

- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10th revised Ed, S. Chand. & Company Ltd, New Delhi.
- 2. An Introduction to Lasers theory and applications by M.N.Avadhanulu and P.S.Hemne revised Edition 2012 . S.Chand and company Ltd -New Delhi.
- 3. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017.
- 4. Concepts of Modern Physics-Arthur Beiser: 6th Ed; Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006.
- Fundamentals of Fibre Optics in Telecommunication & Sensor Systems, B.P. Pal, New Age International Publishers.
- 6. Introduction to Electrodynamics, David Griffith, 4th Edition, Cambridge University press 2017.
- 7. Lasers and Non Linear Optics B.B. Laud, 3rd Ed, New Age International Publishers 2011.
- 8. LASERS Principles, Types and Applications by K.R. Nambiar-New Age International Publishers.
- 9. Solid State Physics-S O Pillai, 8th Ed- New Age International Publishers-2018.
- Web links and Video Lectures (e-Resources):

Web links:

- 1. Laser: www.britannica.com/technology/laser,k
- 2. Laser: https://nptel.ac.in/courses/115/102/115102124/
- 3. Quantum Mechanics: https://nptel.ac.in/courses/115/104/115104096/
- 4. Physics: http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
- 5. Numerical Aperture of fiber: https://bop-iitk.vlabs.ac.in/exp/numerical-aperture-measurement

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in

https://swayam.gov.in

https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham

https://vlab.amrita.edu/index.php?sub=1&brch=189&sim=343&cnt=1

- https://virtuallabs.merlot.org/vl physics.
- htmlhttps://phet.colorado.edu
- https://www.myphysicslab.com

Laveri

SHARNBASVA UNIVERSITY DEPT OF PHYSICS

Course Title:	ENGINEERING P	HYSICS SYLLABUS	
Course Code:	Physics for ME Stream 22PHYM12/22		
Course Type	222011112/22	CIE Marks	50
Theory/Practical)	Theory	SEE Marks	50
Teaching Hours/Week		Total Marks	100
$L \pm I$)	03	Exam Hours	03
Total Hours of Pedagogy	40 hrs	Credits	
 To understand th To understand th To study the vari Teaching-Learning Proc These are sample Strategi outcomes andmake Teach 1. Flipped Class 2. Smart Class Roo 3. Blended Mode o 4. Interactive Simu 5. Assignments ba 6. NPTEL and Oth 7. Lab Experiment Oscillations: Simple Har of springs (Derivation), Engineering applications oscillation (derivation). reference	e types of oscillation, shoel stic properties of materials a e fundamentals of thermoe e Concepts in Lasers, Low ous relevant material chara ress es, which teacher can use t ing -Learning more effection f Learning lations and Animations sed learning er Videos for theory topics Videos <u>Modu</u> monic motion (SHM), diff Damped oscillations, esonance, sharpness of resc ober and Mach Angle. Mac	k waves & its generation, and and failures of engineering m lectric materials and devices temperature phenomena and acterization techniques o accelerate the attainment of ive le-1 (8 Hours) Ferential equation for SHM, s equation of motion for da Forced oscillations and di ponance. Numerical Problems.	aterials and their application. generation of low temperature. The various course eries and parallel combination mped oscillation (derivation),
Pre-requisites: Basics of Self-learning: Simple Ha	Oscillations		
	Modu	ile-2 (8 Hours)	
a beam (derivation), Ca	ailures of Engineering mat roblems y, Stress & Strain rain Curve	IUIUS OF A SINGLE contilovor (io, Beams, bending moment of derivation) and MEMS and its le fracture, torsion of a cylinder
Thermoelectric materia	ls and devices:	and the second	
(Mention Expression), lay	ws of thermoelectricity. Co ers (TEC), low, mid and Space Program (RTG), N Electrical conductivity	nstruction and Working of T high temperature thermos	tier coefficients, figure of merit hermoelectric generators (TEG) electric materials, Applications:

LASER : Basic properties of a LASER beam, Interaction of Radiation with Matter, Einstein's A and B Coefficients, Laser Action & Numerical Problems, Population Inversion, Metastable State, Requisites of a laser system, Types of Lasers, Carbon dioxide Laser, Applications: Laser welding, Laser cutting and Laser drilling. Cryogenics: Production of Low temperature - Joule-Thomson effect, Porous plug experiment, Cascade Process. Applications of Cryogenics, in aerospace and food processing (Qualitative). Pre requisites: Basics of Heat and Thermodynamics Self-learning: Joule Thomson effect.

Module-5 (8 Hours)

Material Characterization and Instrumentation Techniques:

Introduction to nano materials: Nanomaterial and nanocomposites. Principle, construction and working of X-ray Diffractometer, crystallite size determination by Scherrer equation, Principle, construction, working and applications of Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Numerical

Pre requisites: Principle and working of optical Microscope Self-learning: X-Ray Diffractometer

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1 Elucidate the concepts in oscillations and waves,	
CO2 Discuss concepts of elasticity and material failures	
Discuss the fundamentals of Thermoelectric materials and their and their	
Summarize the low temperature phenomena and generation of low temperature	
CO5 Explain the various material characterization techniques	

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are

The CIE marks for the theory component shall be 50 marks is as detailed below

- Three Tests each of 15 Marks; (Third test is improvement test).
- CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes)
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.
- There will be two full questions (with a maximum of three sub questions) from each module

SHARNBASVA UNIVERSITY DEPT OF PHYSICS

ENGINEERING PHYSICS SYLLABUS

- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

- Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
 - 1. Vibrations and Waves (MIT introductory Physics Series), A P French, CBS, 2003 Edition
 - 2 Timoshenko, S. and Goodier J.N. "Theory of Elasticity", 2nd Edition, McGraw Hill Book Co, 2001.
 - 3. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, 1997
 - 4. Mechanical Properties of Engineered Materials By Wole Soboyejo, CRC Press; 1st edition, 2002
 - 5. Heat & Thermodynamics and Statistical Physics(XVIII-Edition) Singhal, Agarwal
 - &Satyaprakash PragatiPrakashan, Meerut, 2006. 4
 - 6. Heat and Thermodynamics (I-Edition) D.S.Mathur S. Chand & Company Ltd., New-Delhi, 1991
 - 7. Physics of Cryogenics by Bahman Zohuri, Elsevier, 2018
 - 8. Materials Characterization Techniques-Sam Zhang, Lin Li, Ashok Kumar, CRC Press, First Edition, 2008.
 - 9. Characterization of Materials- Mitra P.K . Prentice Hall India Learning Private Limited.
 - 10. Nanoscience and Nanotechnology: Fundamentals to Frontiers M.S.Ramachandra Rao & Shubra Singh, WileyIndia Pvt Ltd.
 - 11. Nano Composite Materials-Synthesis, Properties and Applications, J. Parameswaranpillai,, N.Hameed, T.Kurian, Y. Yu, CRC Press.

Web links and Video Lectures (e-Resources):

Web links

- 1. Simple Harmonic motion:
 - https://www.youtube.com/watch?v=k2FvSzWeVxQhttps://www.youtube.com/watch?v=k2FvSz WeVxQ
- Shock waves: https://physics.info/shock/ 2.
- Shock waves and its applications: https://www.youtube.com/watch?v=tz_3M3v3kxk 3.
- Stress-strain curves: https://web.mit.edu/course/3/3.11/www/modules/ss.pdf 4.
- 5. Fracture in materials: https://www.youtube.com/watch?v=x47nky4MbK8
- 6. Thermoelectricity:
- https://www.youtube.com/watch?v=2w7NBuu5w9c&list=PLtkeUZItwHK5y6qy1GFxa4Z4RcmzU aaz6 Thermoelecrtic generator and coolers: https://www.youtube.com/watch?v=NruYdb31xk88 7.
- Cryogenics: https://cevgroup.org/cryogenics-basics-applications/
- 8. Liquefaction of gases: https://www.youtube.com/watch?v=aMelwOsGpIs
- 10. Virtual lab: https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham
- 11. Material Characterization: https://onlinecourses.nptel.ac.in/noc20 mm14/preview
- Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in

Solep

- https://swayam.gov.in https://virtuallabs.merlot.org/vl_physics.
- htmlhttps://phet.colorado.edu https://www.myphysicslab.com

· Laures

Olirce Titlet			
Course Title: Course Code:	Engineering Physics for CV	Stream	
	22PHYC12/22	CIE Marks	50
Course Type (Theory/Practical)	Theory	SEE Marks	50
Teaching	a war in all stranger and a second	Total Marks	100
Hours/Week(L+T)	03	Exam Hours	03
Total Hours of Pedagogy	40 hrs	Credits	03

Course objectives

- To understand the types of oscillation, shock waves & its generation, and applications.
- To Study the elastic properties of materials and failures of engineering materials
- To Study the acoustics buildings.
- To understand the principles photonic devices and their application relevant to civil engineering.
- To understand the various natural disaster and safety.

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes andmake Teaching -Learning more effective

- 1. Flipped Class
- 2. Smart Class Room
- 3. Blended Mode of Learning
- 4 Interactive Simulations and Animations
- 5. Assignments based learning
- NPTEL and Other Videos for theory topics 6.
- 7. Lab Experiment Videos

Module-1 (8 Hours)

Oscillations and Shock waves:

Oscillations: Simple Harmonic motion (SHM), differential equation for SHM & Numericals, series and parallel combination of springs (Derivation) & Numericals, Damped oscillations and equation of motion for damped oscillation (derivation), Tuned Mass Damper (TMD) (Qualitative), Forced oscillations and differential equation of forced oscillation (derivation), resonance, sharpness of resonance.

Shock waves: Mach number and Mach Angle, Mach Regimes, definition and characteristics of Shock waves, Construction and working of Reddy shock tube, Applications of Shock Waves in treatment of dry borewell. **Pre-requisites: Basics of Oscillations**

Self-learning: Simple Harmonic motion, differential equation for SHM

Module-2 (8 Hours)

Elasticity:

Elasticity, Types of stress and strain, Hooke's law & stress-strain diagram, Elastic Moduli & Numericals, Poisson's ratio, Failures of Engineering materials - ductile fracture, brittle fracture, Beams, bending moment of a beam (derivation), Cantilever and Young's modulus of a single cantilever (derivation) and its Engineering Application (Cantilever Bridge). Torsion of a cylinder (derivation) & Numericals, Pre requisites: Elasticity, Stress & Strain

Self-learning: Stress-Strain Curve

Module-3 (8 Hours)

Acoustics:

Introduction to acoustics, Types of Acoustics, reverberation and reverberation time & Numericals, absorption power and absorption coefficient, Requisites for acoustics in auditorium, Sabine's formula (derivation & numericals), Measurement of absorption coefficient, factors affecting the acoustics and remedial measures, Noise and its Measurements, Sound Insulation and its measurements. Impact of Noise in Multi-storied buildings Pre requisites: Basics of Sound, Waves & light properties Self-learning: Introduction to acoustics

🕦 Scanned with OKEN Scanner

Module-4 (8 Hours)

LASER

Properties of a LASER Beam, Interaction of Radiation with Matter, LASER action, Population Inversion, Metastable State, Requisites of a LASER System, Types of Lasers, Gallium-Arsenide LASER construction and working, LASER in Surveying and Ranging, Bridge deflection, Road Profiling. Numerical Problems. **Optical Fiber** Principle and Construction of Optical Fibers, Acceptance angle and NA, Expression for NA(derivation & numericals), Modes of Propagation, Attenuation and Fiber Losses & Numericals, Fiber Optic Displacement Sensor. Pre requisite: Properties of light Self-learning: Propagation Mechanism & TIR in optical fiber Module-5 (8 Hours) Natural hazards and Safety: Introduction, Earthquake, (general characteristics, Physics of earthquake, Richter scale of measurement and earthquake resistant measures), Landslide (causes such as excess rain fall, geological structure, human excavation etc, types of land slide, adverse effects, engineering solution for land slides). Fire hazards and fire protection, fireproofing materials, fire safety regulations and firefighting equipment - Prevention and safety measures. Building materials - Composite materials (Polymer composites, Ceramic composites and Metal composites) Pre requisite: Oscillations Self-learning: Richter scale Course outcome (Course Skill Set) At the end of the course the student will be able to: Elucidate the concepts in oscillations & waves. CO1 Discuss concepts of elasticity and material failures. CO2 Summarize concepts of acoustics in buildings. CO3 Discuss the principles of Photonic devices and their applications relevant to civil engineering. CO4 Describe the various natural hazards and safety precautions. CO5 Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)

- The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- The question paper will have ten full questions carrying equal marks.
- Each full question carries 20 marks.

g Cours Ototo M

SHARNBASVA UNIVERSITY DEPT OF PHYSICS

ENGINEERING PHYSICS SYLLABUS

- There will be two full questions (with a maximum of three sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Materials Science and Engineering by R Balasubramaniam, second edition, Wiley India Pvt. Ltd. Ansari Road, Daryaganj, New Delhi-110002.
- 2. A text book of Engineering Physics by M .N. Avadhanulu, P G. Kshirsagar and T V S Arun Murthy, Eleventh edition, S Chand and Company Ltd. New Delhi-110055.
- 3. Engineering Physics by R. K. Gaur and S. L. Gupta, 2010 edition, Dhanpat Rai Publications Ltd., New Delhi-110002.
- 4. Building Science: Lighting and Accoustics, B. P. Singh and Devaraj Singh, Dhanpat Rai Publications (P) Ltc.,
- 5. Building Acoustics : Tor Eric Vigran, Taylor and Francis, 2008 Edition.
- 6. Photometry Radiometry and Measurements of Optical Losses, Micheal Bukshtab, Springer, 2nd edition.
- 7. Materials Science for Engineers by James F. Shackelford and Madanapalli K Muralidhara, sixth edition, PearsonEducation Asia Pvt. Ltd., New Delhi.
- 8. Lasers and Non Linear Optics, B B Loud, New Age Internationals, 2011 edition
- 9. Shock waves made simple by Chintoo S Kumar, K Takayama and K P J Reddy: Willey India Pvt. Ltd, Delhi 2014.
- 10. An Introduction to Disaster Management, Natural Disastr & Man Made Hazards, S. Vaidyanathan, IKON Books P
- 11. Natural Hazards, Edward Bryant, Cambridge University Press, 2nd Edition
- 12. Natural hazards, Earthquakes, Volcanoes, and landslides by Ramesh P Singh, and Darius Bartlett, CRC Press, Taylorand Francis group.
- 13. Principles of Fire Safety Engineering Understanding Fire & Fire Protection, Akhil Kumar Das, PHI Learning, IIEdition.
- 14. Disaster Management, R.Subramanaian, S.Chand Publishing, 2018.

Web links and Video Lectures (e-Resources):

Web links:

- 1. Simple Harmonic motion: <u>https://www.youtube.com/watch?v=k2FvSzWeVxQ</u>
- 2. Shock waves: https://physics.info/shock/
- 3. Shock waves and its applications: https://www.youtube.com/watch?v=tz_3M3v3kxk
- 4. Stress- strain curves: https://web.mit.edu/course/3/3.11/www/modules/ss.pdf
- 5. Stress curves: <u>https://www.youtube.com/watch?v=f08Y39UiC-o</u>
- 6. Oscillations and waves : https://openstax.org > books > college-physics-2e
- 7. Earthquakes: www.asc-india.org
- 8. Earthquakes and Hazards: http://quake.usgs.gov/tsunami
- 9. Landslide hazards: http://landslides.usgs.gov
- 10. Acoustics: https://www.youtube.com/watch?v=fHBPvMDFyO8

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

http://nptel.ac.in

https://swayam.gov.in

https://virtuallabs.merlot.org/vl_physics.

htmlhttps://phet.colorado.edu

https://www.myphysicslab.com

SHARNBASVA UNIVERSITY **DEPT OF PHYSICS**

Course Title:	ENGINEERI	NG PHYSICS LAB	
Course Code:	Engineering Physics Lab	(Common for all Branches/Stream	m)
Course Type	22PHYL18/28	CIE Marks	50
(Theory/Practical)	Practical	SEE Marks	50
Teaching Hours/Week		Total Marks	100
(Practical) Total Hours of Pedagogy	02	Exam Hours	02
Course ching	38 hrs	Credits	01

Course objectives

- To realize experimentally, the mechanical, electrical and thermal properties of materials, concept of waves and oscillations
- To design simple circuits and hence study the characteristics of semiconductor devices

List of Experiments

- 1. Determine Acceptance angle and Numerical aperture of an optical fiber.
- 2. Determine Wavelength of semiconductor laser using Laser diffraction by calculating grating constant.
- 3. Draw I-V characteristics of photodiode and calculate power responsivity.
- 4. Determination and Estimation of Fermi Energy of Copper.
- 5. Calculation of Dielectric constant by RC charging and Discharging.
- 6. Stefan's Law of radiation.
- 7. Determination of Planck's constant using Light Emitting Diodes.
- 8. Study of input and output Transistor characteristics and hence calculate input resistance, and . . output resistance.

9. n & I by Torsional pendulum (radius of the wire, mass and dimensions of the regular bodies to be given).

- 10. Young's modulus of a beam by Single Cantilever experiment.
- 11. Determination of spring constants in Series and Parallel combination.
- 12. Study Series and parallel LCR resonance and hence Calculate inductance, band width and quality factor using series LCR Resonance.
- 13. Young's modulus by uniform bending.

14. Study of I-V characteristics of Zener diode and determine the knee voltage and breakdown voltage.

Course Outcomes:

Upon completion of this course, students will be able to

- Apprehend the concepts of interference of light, diffraction of light, Fermi energy and magnetic effect of current
- Understand the principles of operations of optical fibers and semiconductor devices such as Photodiode, and NPN transistor using simple circuits
- Determine elastic moduli and moment of inertia of given materials with the help of suggested procedures
- Recognize the resonance concept and its practical applications
- Understand the importance of measurement procedure, honest recording and representing the data, reproduction of final results

Lave

Scanned with OKEN Scanner

CIE for the practical component

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the practical component

- On completion of every experiment in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- The 25 marks are for conducting the experiment and preparation of the laboratory record,10 marks for individual evaluation (which includes viva voce), (the average of total experiments}
- The 15 marks shall be for the test conducted at the end of the semester, for the subject (duration of 1 hour 15 minutes)

SEE for the practical component

- SEE marks for the practical course is 50 marks
- All laboratory experiments are to be included for the practical exam
- Break up marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners
- Students can pick one question (experiment) from the questions lot prepared by the examiners
- General rubrics suggested for SEE are mentioned here write up 15%, conduction procedure and result is 70% and viva voce 10% of maximum marks.
- Practical SEE will be conducted by University as per the scheduled time table, for the subject (duration 02 hours).

Web links and Video Lectures (e-Resources):

https://www.britannica.com/technology/laser,k https://nptel.ac.in/courses/115/102/115102124/ https://nptel.ac.in/courses/115/104/115104096/ http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html https://onlinecourses.nptel.ac.in/noc20_mm14/preview

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning :

- http://nptel.ac.in https://swayam.gov.in
- https://www.vlab.co.in/participating-institute-amrita-vishwa-vidyapeetham

N.Du A Thanks

SHARNBASVA UNIVERSITY **DEPT OF PHYSICS** INTRODUCTION TO NANOTECHNOLOGY SYLLABUS

Course Title:	Introduction to Nano Technology							
Course Code:	22ETC15L	50						
Course Type (Theory/Practical)	Theory	SEE Marks	50					
		Total Marks	100					
Teaching Hours/Week(L+T)	02	Exam Hours	03					
Total Hours of Pedagogy	40 hrs	Credits	02					

Course objectives

- To provide a comprehensive overview of synthesis and characterization of nanoparticles, nanocomposites and hierarchical materials with nanoscale features.
- To provide the engineering students with necessary background for understanding various nanomaterials characterization techniques
- To develop an understanding of the basis of the choice of material for device applications
- To give an insight into complete systems where nanotechnology can be used to improve our everyday life

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes andmake Teaching -Learning more effective

- Flipped Class 1.
- Smart Class Room 2.
- Blended Mode of Learning 3.
- Interactive Simulations and Animations 4.
- Assignments based learning 5.
- NPTEL and Other Videos for theory topics 6.
- Lab Experiment Videos 7

Module-1 (8 Hours)

Nanomaterials Introduction, classification, Frontier of future-an overview, Length Scales, Variation of physical properties from bulk to thin films to nanomaterials, Confinement of electron in 0D, 1D, 2D and 3D systems, Surface to Volume Ratio, Synthesis of Nanomaterials: Bottom-Up approach: Chemical Routes for Synthesis of nanomaterials-Sol-gel, Precipitation, Solution Combustion synthesis, Hydrothermal, SILAR, Chemical Bath

Deposition. Top-Down

approach- Ball milling technique, Sputtering, Laser Ablation Module-2 (8 Hours)

Characterization of Nanomaterials

Basic principles, construction and working instrumentations of Electron Microscopy -- Transmission Electron Microscope, Scanning Electron Microscope, Scanning Probes- Scanning Tunneling microscope, Atomic

new?

SHARNBASVA UNIVERSITY DEPT OF PHYSICS INTRODUCTION TO NANOTECHNOLOGY SYLLABUS

Basic principles of working of X-ray diffraction, derivation of Debye-Scherrer equation, numericals on Scherrer equation, Optical Spectroscopy- Instrumentation and application of IR, UV/VIS (Band gap

Carbon Based Materials

Module-3 (8 Hours)

Introduction, Synthesis, Properties (electrical, Electronic and Mechanical), and Applications of Graphene, SWCNT, MWCNT, Fullerenes and other Carbon Materials: Carbon nanocomposites, nanofibres, nanodiscs, nanodiamonds.

Module-4 (8 Hours)

Nanotechnology in Energy storage and conversion

Solar cells: First generation, Second generation and third generation solar cells: Construction and working of Dye sensitized and Quantum dot sensitized solar cells.

Batteries: Nanotechnology in Lithium ion battery- working, Requirements of anodic and cathodic materials, classification based on ion storage mechanisms, limitations of graphite anodes, Advances in Cathodic materials, Anodic materials, Separators

Fuel Cells: Introduction, construction, working of fuel cells and nanotechnology in hydrogen storage and proton exchange membranes

Applications of Nanotechnology

Module-5 (8 Hours)

Nanotech Applications and Recent Breakthroughs: Introduction, Significant Impact of Nanotechnology and Nanomaterial, Medicine and Healthcare Applications, Biological and Biochemical Applications (Nano biotechnology), Electronic Applications (Nano electronics), Computing Applications (Nano computers), Chemical Applications (Nano chemistry), Optical Applications (Nano photonics), Agriculture and Food Applications, Recent Major Breakthroughs in Nanotechnology.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

-	Sugge	sted Learning Resources:	-
the states and	CO5	Assess the suitability of nanomaterials for various device applications. [L4]	
and a state of the second	CO4	Classify the nanomaterials based on the dimensions. [L3]	19
Sector Sector	CO3	Discuss the application of nanotechnology to mechanical and civil domains [L2]	1-1-1- 8-04
All and a state of the	CO2	Explain working of basic instruments used in characterization of nanoparticles. [L2]	
-	CO1	Demonstrate the synthesis of nanoparticles by various techniques. [L2]	
£.			

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

1. Nano Materials - A.K. Bandyopadhyay/ New Age Publishers

(Illever

Though .

SHARNBASVA UNIVERSITY DEPT OF PHYSICS INTRODUCTION TO NANOTECHNOLOGY SYLLABUS

2. Nan	ocrystals: Synthesis, Properties and Applications - C.N.R. Rao, P. John Thomas and G. U. Kulkarni,
Spr	inger Series in Materials Science
 Nat 4. Pet 	no Essentials- T. Pradeep/TMH er J. F. Harris, Carbon nanotube science: synthesis, properties, and applications. Cambridge
Un	iversity Press, 2011
Referen	A. Shah, K.A. Shah, "Nanotechnology" The Lemma of the publisher/Edition and Year) ace Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
1. Introd	duction to Nanotechnology, C. P. Poole and F. J. Owens, whey, 2005
2 Unde	erstanding Nanotechnology, Scientific American 2002
	otechnology, M. Ratner and D. Ratner, Prentice Hall 2003 otechnology, M. Wildon, K. Kannagara, G. Smith, M. Simmons and B. Raguse, CRC Press Boca Raton
2002	2 and reactions on Lision batteries, solar cells and fuel cells
Web lin	hks and Video Lectures (e-Resources):
1. 2. 3.	https://nptel.ac.in/courses/118104008 https://www.digimat.in/nptel/courses/video/118104008/L16.html https://archive.nptel.ac.in/courses/113/106/113106099/
3. 4. 5.	https://nptel.ac.in/courses/112107283 https://onlinecourses.nptel.ac.in/noc22_me131/preview
	AZON My & Drogot

Se	Sharnb heme for B.Tech., Firs Il the B.Tech., branches offered b ester, Physics Cross 44	asva Univ	ersity,	Kala	burag	i					
A	Il the B.Tech. branches ff	t Year Progra	am fron	n the A	Cadem	ic Vor	202				
Sem	Il the B.Tech., branches offered b ester, Physics Group - (fo	y the University ar	e grouped	in to Four	Stroome		ar: 202	2-23			
	for the second s	streams MFS	& FEC in		Streams	CES, ME	S, EES and	CSS)	8 - ¹		
e Code		Les merdunig Wech, Energy, EEE and ECE branches									;)
	Course Title	Teaching Department						Examina	ation		
M21	Mathematic	Paper Setting Board	Tutorial Tutorial		Duration	CIE	SEE	Total	Credit		
E21	Mathematics for MES - II		3		Drawing	es	Duration	Marks	Marks	Marks	Ci Cui
122	Mathematics for EES -II	Mathematics		-	2	0	3+2	50	50	100	4
22	Physics for MES		3	10 A 10 T 1	2	0	3+2	50	50	100	4
	Physics for EES	Physics	3		0	0	3	50	50	100	3
23	Elements of Mechanical Engg (for				0	0	3	50	50	100	3
3	Mech & Energy Engg. only) Basic Electrical Engineering (for EEE	Civil Engg	3 or 2 (for integrated) 0				3 or 3+2	50	50	100	3
66) 	only)	EEE	3 or 2 (for integrated) 0				3 or 3+2	50	. 50	100	3
	Basic Electronics (for ECE only)	ECE	3 or 2 (for integrated) 0				3 or 3+2	50	50		10
	Engineering Science Course-II	Respective Dept.	2		0	0	3 or 3+2	50	50	100	3
15100	Emerging Technology Course-II/ Programming Language Course-II	Any Engg. Dept./ Any Dept.	3 or 2 (for integrated) 0				3 or 3+2	50	50 50	100 100	2
	Ability Enhancement Course-II	Any Dept.	1 hour the		d.				00	100	3
	Samskrutika Kannada/Balake		1 hour theo /practice/o	ory or 2 nd	ours tutoria		1 or 2	50	50	100	1
	Kannada	Kannada	combinatio	ns of all o	f uny otner		1 or 2	50	50	100	1
28	Physics Lab	Physics	0	0	2	-		and the second		100	1
	Programming for Problem Solving Lab	CSE/AI&ML/ AI&DS		0	2	0	2	50 50	50 50	100	1
		A batch of 4 to 5 at				Salaria Charles	a faire day	50	50	100	1
20	Project - II	A batch of 4 to 5 stu with a guide, may ud or 2	ertake one p hours of prac	roject (1 ho	ur of theory,	nches) /tutorial	1 or 2	50	50	100	1
		Гotal						500	500	1000	20
Cours	se - (IC - Integrated Course)	MES: Mechanical En	gineering St	tream (M)	19 A.S.			500	500	1000	20
Cours	ie ·	EES: Electrical & Electrical					di Secarita			in an	and the set
nce Co	ourse - Open Elective	PROJ: Project		0.0	(-/						
logy C	Course -Open Elective	SDC-OE: Skill Develo	pment Cour	rse - Open	Elective						
	e Course - Open Elective	HSMC: Humanities,	Social Scient	ces and M	anagement	Course	and the second				
ent Co	ourse - Open Elective		······································		Anna an than 1980	the second	deal and				a de tradeciones de la

		Drat		Dasva Univ						ile)			
	D.T.		All the B.Tech., branches offered b	First Year Pro	gram f	rom th	e Acad	emic	Year: 2	022-	72		
	D. Tec	n., I Sem	ester, Physics Group (fee	by the University ar	e grouped	in to Four	Streams (CES, MES	EES and	(22)	2.5		
SI. Course Course				FIRST Year Program from the Academic Year: 2022-23 by the University are grouped in to Four Streams (CES, MES, EES and CSS) r streams CES & CSS including Civil, CSE, Al&ML and Al&DS branche Teaching Department/ Teaching hours/week Examination									
No.	course	Code	Course Title	Teaching Department/	1	eaching h	ours/week			AIQL	JS bra	anche	s)
1		and the first for the		Paper Setting Board The		Tutorial Practical/ A				Examina CIE		-	
1	ASC (IC)	22MATC11	Mathematics for CES - I	H W	Lecture	- 2080 -	Drawing	es	Duration	Marks	SEE	Total	Credit
		22MATS11	Mathematics for CSS - I	Mathematics			2	0	3+2	50	50	Marks	
2	ASC	22PHYC12	Physics for CES		3		2	0	3+2	50	50	100 100	4
		22PHYS12	Physics for CSS	Physics	3		0	0	3	50	50	100	4
3	ESC	22CIV13	Engineering Mechanics for CES	Civil Engg	3	the second se	0	0	3	50	50	100	3
<u> </u>	LJC	22PPC13	Principles of Programing with C for		3 or 2 (for integrated)		0	3 or 3+2	50	50	100	3	
4	ESC-OE		LSS	CSE/AI&ML/ AI&DS	3 or 2 (for integrated)		0	3 or 3+2 5				3	
		22ESC14X	Engineering Science Course-I	Respective Dept.				1 22		50	100	3	
5	ETC-OE /	22ETC15X	Emerging Technology Course-I or	Any Engg. Dept./	2 0 3 or 2 (for integrated)		0	3 or 3+2	50	50	100	2	
<u> </u>	A CONTRACT OF	22PLC15X	Programming Language Course - I	Any Dept.			rated)	0	3 or 3+2	50	50	100	관련교
6	AEC-OE	22AEC16X	Ability Enhancement Course-I	Any Dept.	1 hour theory or 2 hours tutorial /practice/activities or any other combinations of all of them.			18 - y	1 or 2	2 50	50	100	3
7	HSMC	22HSM17	Samskrutika Kannada/Balake					1		50	50	100	1
8			Kannada	Kannada				r	1 or 2	50	50	100	
0	ASC-L	CONTRACTOR AND	Physics Lab	Physics	0		2			1.2.	50	100	1
9	ESC-L		Programming for Problem Solving	CCE/AIR MAL (AIR DO	20		L	0	2	50	50	100	1
1.12			Lab	CSE/AI&ML/ AI&DS		0	2	0	2	50	50	100	1
10	SDC - OE	22PROJ10	Project - I	A batch of 4 to 5 st with a guide, may up	lertake one j	project (1 h	our of theor	anches) y/tutorial	1 or 2	50	50	100	1
				Total	hours of pro	ictice/activ	ities)						
) - Applied	Science Cour	rse - (IC - Integrated Course)	CES: Civil Engineeri	og Stream (-1		and the second		500	500	1000	20
С - Е	ngineering	Science Cour	rse (CSE: Computer Scie	nce & Engin	eering Str	(2)						
C-OE	: Engineer	ing Science C	Course - Open Elective	CAED: Computer Ai	ded Engine	Pring Doci					<u>Services</u>	al sala	na sin Yanan
C-OE	: Emerging	Technology	Course -Open Elective	SDC-OE: Skill Develo	pment Co	Irse - Onor							
C-OE	: Program	ming Languag	ge Course - Open Elective	HSMC: Humanities,	Social Scien	ces and M	Appagement	+ C	<u> </u>				
C-OE	: Ability En	hancement (Course - Open Elective			ices and N	anagemen	it course	Sta Ballion	1.66		100 M. C.	and and

Phone / Fax No. 08472-277852, 277853, 277854, 277855 www.sharnbasvauniversity.edu.in - email : Sharnbasvauniversity@gmail.com UGC Status: Letter No. F,8-29/2017(CPP-I/PU), Dated 20 Dec. 2017. Enlisted by the University Grants Commission, New Delhi, in the list of Private Universities in India. A Private University enacted by Govt. of Kamataka as "Shambasva University Act. 2012" Kamataka Act No. 17 of 2013. Notification No. ED 144 URC 2016 dated 29/07/2017

Dr. Niranjan V. Nisty M.D., Ph.D., Vice-Chancellor

Sri N.S. Devarkal Pro Vice-Chancellor

Dr. V. D. Mytri Pro Vice-Chancellor

Dr. Anilkumar Bidve Registrar : Cell : 6362910165

Dr. Basavaraj S. Mathapati Registrar (Eval) : Cell : 9448650187

Dr. Lakshmi Patil Dean : Cell : 6362910168

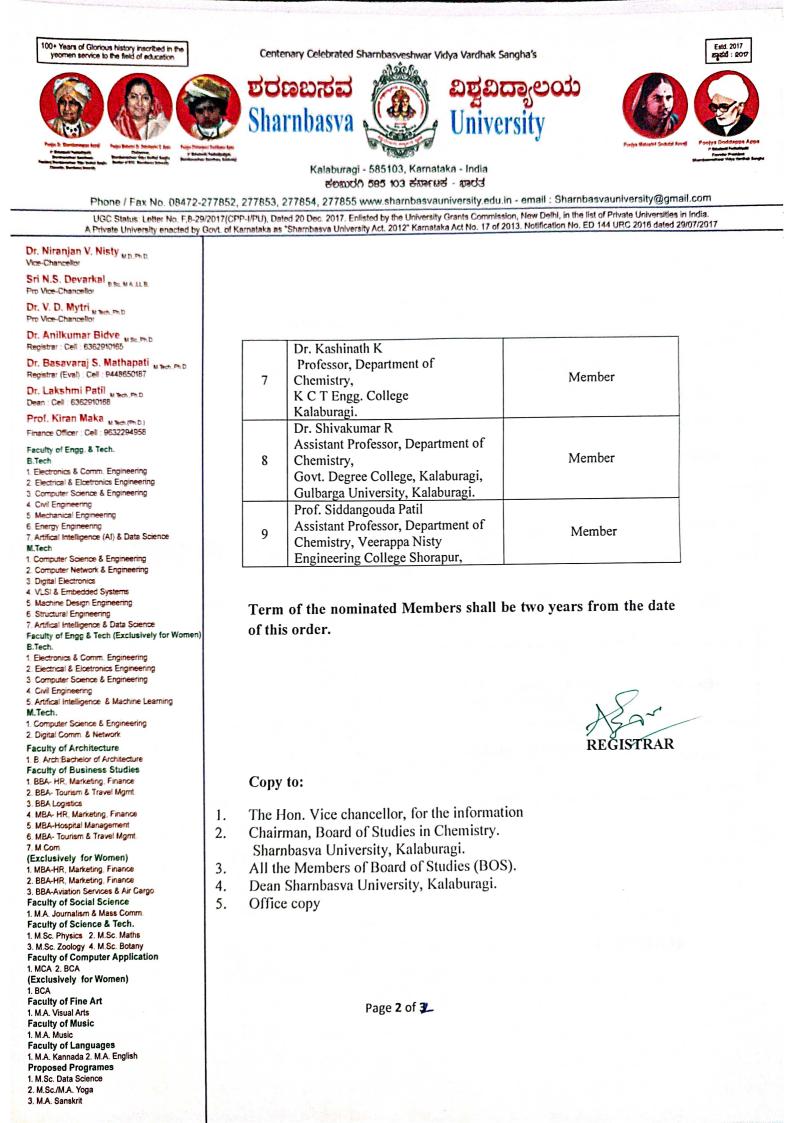
Prof. Kiran Maka M.Tech.(Ph.D.) Finance Officer : Cell : 9632294958

Faculty of Engg. & Tech. B.Tech

- 1. Electronics & Comm. Engineering
- 2. Electrical & Elcetronics Engineering
- 3. Computer Science & Engineering
- 4. Civil Engineering 5. Mechanical Engineering
- 6. Energy Engineering
- 7. Artifical Intelligence (AI) & Data Science
- M.Tech
- 1. Computer Science & Engineering 2. Computer Network & Engineering
- 3. Digital Electronics
- 4. VLSI & Embedded Systems
- 5. Machine Design Engineering
- 6. Structural Engineering
- 7. Artifical Intelligence & Data Science Faculty of Engg & Tech (Exclusively for Women)
- B.Tech.
- 1. Electronics & Comm. Engineering 2. Electrical & Electronics Engineering
- 3. Computer Science & Engineering
- 4. Civil Engineering
- 5. Artifical Intelligence & Machine Learning M.Tech.
- 1. Computer Science & Engineering
- 2. Digital Comm. & Network

Faculty of Architecture

- 1. B. Arch:Bachelor of Architecture
- Faculty of Business Studies
- 1. BBA- HR, Marketing, Finance
- 2. BBA- Tourism & Travel Mgmt.
- 3. BBA Logistics
- 4. MBA- HR, Marketing, Finance 5. MBA-Hospital Management
- 6. MBA- Tourism & Travel Mgmt
- 7. M.Com.
- (Exclusively for Women)
- 1. MBA-HR, Marketing, Finance
- 2. BBA-HR, Marketing, Finance
- 3. BBA-Aviation Services & Air Cargo Faculty of Social Science
- 1. M.A. Journalism & Mass Comm
- Faculty of Science & Tech.
- 1. M.Sc. Physics 2. M.Sc. Maths 3. M.Sc. Zoology 4. M.Sc. Botany
- Faculty of Computer Application
- 1. MCA 2. BCA
- (Exclusively for Women) 1. BCA
- Faculty of Fine Art
- 1. M.A. Visual Arts
- Faculty of Music
- 1. M.A. Music
- Faculty of Languages 1. M.A. Kannada 2. M.A. English
- Proposed Programes
- 1. M.Sc. Data Science 2. M.Sc./M.A. Yoga
- 3. M.A. Sanskrit


Date: 05-11-2022

CONSTITUTION OF BOARD OF STUDIES IN CHEMISTRY

Reference: 1. Hon. Vice Chancellor's approval dated 04/11/2022 With reference to the above cited subject and references, the Board of Studies in Mathematics for the period of two academic years i.e. 2022-2023 and 2023-2024 has been constituted as below.

SI. No.	Name and address of the Member	Appointed As		
	Dr.Nirdosh Patil			
	Professor and Chairman,			
1	B.Tech (Co-Ed)	Chairman		
	Dept. of Chemistry,			
	Sharnbasva University. Kalaburagi			
	Internal Members			
	Dr. Parvati S G			
2	Associate Professor, Department of Chemistry,	Member		
2	B.Tech (Co-Ed)	1,10,110,01		
	Sharnbasva University. Kalaburagi			
	Dr. Shweta Patil			
3	Associate Professor, Department of Chemistry,	Member		
5	B.Tech (Co-Ed)			
	Sharnbasva University. Kalaburagi			
4	Prof Anita R H Assistant Professor, Dept. of Chemistry,			
	B.Tech (Ex-Women)	Member		
	Sharnbasva University. Kalaburagi			
	Prof Sangeeta Aland			
	Assistant Professor, Dept. of Chemistry,	Member		
5	B.Tech (Ex-Women)	Wiember		
	Sharnbasva University. Kalaburagi			
	External Members			
	Dr. R S Malipatil			
	Associate Professor, Department of Chemistry,	Member		
6	Poojya Doddappa Appa College of Engineering,	wiennoer		
	Kalaburagi.			

Page 1 of 2

Kalaburagi - 585103, Karnataka - India ਜ਼ਰੂਆਰੀ 585 103 ਚਨਾਜ਼ਬਰ - ਬਾਹਤ

Phone / Fax No. 08472-277852, 277853, 277854, 277855 www.sharnbasvauniversity.edu.in - email : Sharnbasvauniversity@gmail.com UGC Status: Letter No. F,8-29/2017(CPP-I/PU), Dated 20 Dec. 2017. Enlisted by the University Grants Commission, New Delhi, in the list of Private Universities in India. A Private University enacted by Govt. of Kamataka as "Shambasva University Act. 2012" Kamataka Act No. 17 of 2013. Notification No. ED 144 URC 2016 dated 29/07/2017

Dr. Niranjan V. Nisty M.D., Ph.D., Vice-Chancellor

Sri N.S. Devarkal BSC, MA, LLB, Pro Vice-Chancellor

Dr. V. D. Mytri M. Tech. Ph. D Pro Vice-Chancellor

Dr. Anilkumar Bidve Registrar : Cell : 6362910165

Dr. Basavaraj S. Mathapati M. Tech., Ph. D Registrar (Eval) : Cell : 9448650187

Dr. Lakshmi Patil M.Tech., Ph.D. Dean : Cell : 6362910168

Prof. Kiran Maka M. Tech. (Ph.D.) Finance Officer : Cell : 9632294958

Faculty of Engg. & Tech. B.Tech

- 1. Electronics & Comm. Engineering
- 2. Electrical & Electronics Engineering 3. Computer Science & Engineering
- 4. Civil Engineering
- 5. Mechanical Engineering
- 6. Energy Engineering
- 7. Artifical Intelligence (AI) & Data Science M.Tech
- 1. Computer Science & Engineering
- 2. Computer Network & Engineering
- 3. Digital Electronics 4. VLSI & Embedded Systems
- 5. Machine Design Engineering
- 6. Structural Engineering
- 7. Artifical Intelligence & Data Science Faculty of Engg & Tech (Exclusively for Women)
- B.Tech. 1. Electronics & Comm. Engineering
- 2. Electrical & Electronics Engineering
- 3. Computer Science & Engineering
- 4. Civil Engineering
- 5. Artifical Intelligence & Machine Learning M.Tech.
- 1. Computer Science & Engineering
- 2. Digital Comm. & Network
- Faculty of Architecture
- 1. B. Arch:Bachelor of Architecture
- Faculty of Business Studies
- 1. BBA- HR, Marketing, Finance 2. BBA- Tourism & Travel Mgmt.
- 3. BBA Logistics
- 4. MBA- HR, Marketing, Finance
- 5. MBA-Hospital Management 6. MBA- Tourism & Travel Mgmt
- MBA- Tourism & Travel Mgi
 M.Com.
- (Exclusively for Women)
- 1. MBA-HR, Marketing, Finance
- 2. BBA-HR, Marketing, Finance 3. BBA-Aviation Services & Air Cargo
- Faculty of Social Science
- 1. M.A. Journalism & Mass Comm
- Faculty of Science & Tech.
- 1. M.Sc. Physics 2. M.Sc. Maths
- 3. M.Sc. Zoology 4. M.Sc. Botany
- Faculty of Computer Application
- 1. MCA 2. BCA
- (Exclusively for Women) 1. BCA
- Faculty of Fine Art 1. M.A. Visual Arts
- Faculty of Music
- 1. M.A. Music Faculty of Languages
- 1. M.A. Kannada 2. M.A. English Proposed Programes 1. M.Sc. Data Science
- 1. M.Sc. Data Scien 2. M.Sc./M.A. Yoga
- 3. M.A. Sanskrit

Board of Studies Members Sub Committee-I in Chemistry For Circuit Branches [ECE, EEE, CSE and AI&DS]

SI.	Name and address of the Member	Appointed As
No.		
1	Prof. Ambresh Reddy Assistant Professor, Dept. of Chemistry, Faculty of Engineering and Technology(Co-ed), Sharnbasva University, Kalaburagi.	Member
2	Prof. Earamma Patil Assistant Professor, Department of Chemistyr, Faculty of Engineering and Technology (Co-ed) Sharnbasva University, Kalaburagi.	Member
3	Dr. Nagabhushan Patil Professor, Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology (Co- ed)Sharnbasva University, Kalaburagi.	Member
4	Dr. ShashidharSonnad Professor & Chairman Deparment of Electronics & Communication Engg, Faculty of Engineering and Technology(Co-ed), Sharnbasva University, Kalaburagi.	Member
5	Dr. SujataMallapur Professor & Chairman, Dept. of Artificial Intelligence and Machine Learning, Faculty of Engineering and Technology (Exclusively for Women), Sharnbasva University, Kalaburagi	Member
6	Dr. SachinVeershetty Associate Professor, Dept. of Computer Science & Engineering, Faculty of Engineering and Technology(Co-ed), Sharnbasva University, Kalaburagi.	Member

Term of the nominated Members shall be two years from the date of this order.

Copy to:

1. Chairman, Board of Studies UG in Chemistry.

- 2. All the Members of Board of Studies (BOS).
- 3. Dean, Sharnbasva University, Kalaburagi.

4. Office copy.

REGÍSTRAR

. . . .

Kalaburagi - 585103, Karnataka - India ಕ್ಷಣವಾರಗಿ 585 103 ಕರ್ನಾಟಕ - **ಭಾರತ**

Phone / Fax No. 08472-277852, 277853, 277854, 277855 www.sharnbasvauniversity.edu.in - email : Sharnbasvauniversity@gmail.com UGC Status: Letter No. F,8-29/2017(CPP-I/PU), Dated 20 Dec. 2017. Enlisted by the University Grants Commission, New Delhi, in the list of Private Universities in India A Private University enacted by Govt, of Karnataka as "Sharnbasva University Act. 2012" Karnataka Act No. 17 of 2013. Notification No. ED 144 URC 2016 dated 29/07/2017

Dr. Niranjan V. Nisty MD.PhD. Vice-Chancellor

Sri N.S. Devarkal B SC., MA, LLB. Pro Vice-Chancellor

Dr. V. D. Mytri M Tech. Ph.D Pro Vice-Chancellor

Dr. Anilkumar Bidve M.Sc., Ph.D. Registrar : Cell : 6362910165

Dr. Basavaraj S. Mathapati M Tech. Ph.D. Registrar (Eval) : Cell : 9448650187

Dr. Lakshmi Patil M.Tech., Ph.D. Dean : Cell : 6362910168

Prof. Kiran Maka M Tech. (Ph.D.) Finance Officer : Cell : 9632294958

Faculty of Engg. & Tech. B.Tech

- 1. Electronics & Comm. Engineering
- 2 Electrical & Elcetronics Engineering 3. Computer Science & Engineering
- 4. Civil Engineering
- 5. Mechanical Engineering
- 6. Energy Engineering
- 7. Artifical Intelligence (AI) & Data Science M.Tech
- 1. Computer Science & Engineering
- 2. Computer Network & Engineering
- 3 Digital Electronics
- 4. VLSI & Embedded Systems 5. Machine Design Engineering
- 6. Structural Engineering
- 7. Artifical Intelligence & Data Science
- Faculty of Engg & Tech (Exclusively for Women) B.Tech.
- 1. Electronics & Comm. Engineering
- 2. Electrical & Electronics Engineering 3. Computer Science & Engineering
- 4. Civil Engineering
- 5. Artifical Intelligence & Machine Learning
- M.Tech.
- 1. Computer Science & Engineering
- 2. Digital Comm. & Network
- **Faculty of Architecture** 1. B. Arch:Bachelor of Architecture
- Faculty of Business Studies
- 1. BBA- HR, Marketing, Finance
- 2 BEA- Tourism & Travel Momt
- 3. BEA Logistics
- 4, MBA- HR, Marketing, Finance 5. MBA-Hospital Management
- 6. MBA- Tourism & Travel Mgmt.
- 7. M.Com
- (Exclusively for Women)
- 1. MBA-HR, Marketing, Finance 2, BBA-HR, Marketing, Finance
- 3. BBA-Aviation Services & Air Cargo
- Faculty of Social Science 1. M.A. Journalism & Mass Comm
- Faculty of Science & Tech.
- 1. M.Sc. Physics 2. M.Sc. Maths
- 3. M.Sc. Zoology 4. M.Sc. Botany **Faculty of Computer Application**
- 1. MCA 2. BCA
- (Exclusively for Women)
- 1. BCA Faculty of Fine Art
- 1. M.A. Visual Arts
- Faculty of Music
- 1. M.A. Music
- **Faculty of Languages** 1. M.A. Kannada 2. M.A. English
- **Proposed Programes** 1 M Sc. Data Science
- 2. M.Sc./M.A. Yoga 3. M.A. Sanskrit

- Sharnbasva University, Kalaburagi. Dr. S. S. Awanti Professor, Dept. of Civil Engineering,
- 4 Faculty of Engineering and Technology(Co-ed), Sharnbasva University, Kalaburagi.

Term of the nominated Members shall be two years from the date of this order.

Board of Studies Members Sub Committee-II in Chemistry

Name and address of the Member

For Non- Circuit Branches [Energy Engg, Mech and Civil]

Faculty of Engineering and Technology(Co-ed),

Assistant Professor, Department of Chemistyr,

Faculty of Engineering and Technology (Co-ed)

Faculty of Engineering and Technology(Co-ed),

Professor & Chairman, Dept. of Energy Engineering,

Assistant Professor, Dept. of Chemistry,

Sharnbasva University, Kalaburagi.

Sharnbasva University, Kalaburagi.

Prof. Earamma Patil

Dr. Basavaraj Srigiri

Copy to:

Sl. No.

1

2

3

Prof. Neha B

- Chairman, Board of Studies UG in Chemistry. 1.
- All the Members of Board of Studies (BOS). 2.
- 3. Dean, Sharnbasva University, Kalaburagi.
- 4. Office copy.

REGISTRAR

Appointed As

Member

Member

Member

Member

				The second secon	The ret	. APL	, (F	E	C:1	"	A Contraction of the second se	APPer S	v	A.
A DESCRIPTION OF A DESC										20	AEC-OE: Ability Enhancement Course - Open Elective	Incement Cour	bility Enha	:C-0E: A	A
					Course	anagement	ces and Ma	Social Scien	HSMC: Humanities, Social Sciences and Management Course	HSMC:	PLC-OE : Programming Language Course - Open Elective	ng Language C	rogrammi	.C-OE : P	P
						Open Elective	Course - Open		SDC-OE: Skill Development	SDC-OL	ETC-OE: Emerging Technology Course -Open Elective	echnology Cou	merging Te	-C-OE: E	П
2						э	ineering Design	ded Enginee	CAED: Computer Aided Eng	CAED:	ESC-OE : Engineering Science Course - Open Elective	g Science Cour:	ingineering	C-OE : E	
						tream (E)	Engineering Stream (E)		EES: Electrical & Electronics	EES: EI		ESC - Engineering Science Course	neering Sc	C - Engi	m
							ng Stream (M)	Igineering S	MES: Mechanical Engineeri	MES: N	(IC - Integrated Course)	ASC (IC) - Applied Science Course -	Applied Sc	SC (IC) -	Þ
20	1000	500	500							Total					1
						ties)	f practice/activities)	or 2 hours of pra	or 2					-	T-
4	100	50	50	1 or 2	/tutorial	our of theory,	roject (1 ho	'ertake one p	with a guide, may udertake one project (1 hour of theory/tutorial	with a y	Project - I	22PROJ10 Pro	SDC - OE 22	10 SD(
					inches)	different bro	? branch or	idents (same	A batch of 4 to 5 students (same branch or different branches)	A bat					
1	100	50	50	2	0	2	0	0	EEE	ECE or EEE	Electronics and Electrical Lab	22EECL19 Ele		9 ESC-L	
1	100	50	50	2	0	2	0	0	stry	Chemistry	Chemistry Lab	22CHEL18 Ch		8 ASC-L	
1	100	50	50	1 or 2		l of them.	binations of all	any other combinations of all of them.	Respective Dept	Respec	Indian Constitution	22CIPE17 Inc		7 HSMC	
1	100	50	50	1 or 2	ctivities or	1 hour theory or 2 hours tutorial /practice/activities or	vr 2 hours tuto	1 hour theory c		Any Dept.	Ability Enhancement Course-I	22AEC16X Ab	AEC-OE 22/	6 AEC	-
ω	100	50	50	3 or 3+2	0	rated)	or 2 (for integrated)	3 or 2	Any Engg. Dept./ Any Dept.	Any Engg. Any Dept.	Emerging Technology Course-I or Programming Language Course - I	22ETC15X/ Em 22PLC15X Pro	ETC-OE / 2: PLC-OE 2:	5 PLC	
2	100	50	50	3 or 3+2	0	0		2	Respective Dept.	Respec	Engineering Science Course-I	22ESC14X Eng	ESC-OE 22E	4 ESC	-
ω	100	50	50	3 or 3+2	0	2		2	ngg	Mech Engg	ED	22CED13 CAED		3 ESC	
ω	100	50	50	ω	0	0		ш	sci y		Chemistry for EES	22CHEE12 Ch			
ω	100	50	50	ω	0	0		ω	trv	Chemic	Chemistry for MES	22CHEM12 Che			
4	100	50	50	3+2	0	2		3	וומנורא	ועומנוופווומנוכא	Mathematics for EES - I	22MATE11 Ma	221		
4	100	50	50	3+2	0	2		3	pating	Mathor	Mathematics for MES - I	22MATM11 Ma		1 1	
Credits	Total Marks	SEE Marks	CIE Marks	Duration	Activiti es	Practical/ Drawing	Tutorial	Theory/ Lecture	Paper Setting Board	Paper	Course Title	Course Code	Course Co		
		ation	Examination				Teaching hours/week	_	Teaching Denartment/	Teaching				SI-	
	branches)		EEE & ECE	·gy, EEE	ı., Energy,	ES including Mech.,	includir		ams MES	(for stre	I Semester, Chemistry Group - (for streams MES & E	l Semestei	B.Tech.,	B	
			SS)	EES and CSS)	ES, MES,	itreams (Cl	to Four S	grouped in	versity are	by the Uni	All the B.Tech., branches offered by the University are grouped in to Four Streams (CES, MES,	All th			
			-23	r: 2022	c Yeal	m the Academic Year: 2022-23	the Ac		Prograr	st Year	Scheme for B.Tech., First Year Program fro	Sche			
•						uragi	Kalaburagi	,	Sharnbasva University	basva	Sharn				
															1

R																												1
Ŀ	AEC-0	PLC-0	ETC-0	ESC-OE :	ESC -	ASC (I			10	9	8	7	6	ſ	,	4	ω	Ν	_	н	_	No.	<u> </u>					
141	E: Ability E	E : Progran	E: Emergir	E : Enginee	Engineerin	C) - Applie			SDC - OE	ESC-L	ASC-L	HSMC	AEC-OE	PLC-OE	ETC-OE /	ESC-OE	ESC	ASC		ASC (IC)		Course		B.Tech				
1 Les	inhanceme	nming Lang	ig Technolo	ering Scienc	Engineering Science Course	ASC (IC) - Applied Science Course -			22PROJ20	22EECL29	22CHEL28	22CIPE27	22AEC26X	22PLC25X	22ETC25X/	22ESC24X	22CED23	22CHES22	22CHEC22	22MATS21	22MATC21	Code	Course	B.Tech., Il Semester,		S		
Contest	nt Course - (uage Course	gy Course -(e Course - O	ourse	ourse - (IC - I			Project - II	Electronic	Chemistry Lab	Indian Constitution	Ability En			Engineeri	CAED	Chemistry for CSS	Chemistry for CES	Mathema	Mathema				All the B.Te	cheme		
Prof.	AEC-OE: Ability Enhancement Course - Open Elective	PLC-OE : Programming Language Course - Open Elective	ETC-OE: Emerging Technology Course -Open Elective	Engineering Science Course - Open Elective		(IC - Integrated Course)				Electronics and Electrical Lab	Lab	nstitution	Ability Enhancement Course-II	Programming Language Course-II	Emerging Technology Course-II/	Engineering Science Course-II		for CSS	for CES	Mathematics for CSS - II	Mathematics for CES - II	Course Title		Chemistry Group - (for streams CES	All the B.Tech., branches offered by the University are grouped in	Scheme for B.Tech., First Year Program from	Sha	
		HS	SD	CA	SD	CE	Total		wi ,	EC	Ch	Re				Re	M		2		-	P	1	up - (fo	ered by th	First Y	rnbas	
PM (2:1	11	HSMC: Humanities, Social Sciences	SDC-OE: Skill Development Course	CAED: Computer Aided Engineering Design	CSS: Computer Science & Engineering Stream (S)	CES: Civil Engineering Stream (C)	tal	or 2	A batch of 4 to 5 students (same branch or different branches) with a guide, may udertake one project (1 hour of theory/tutorial	ECE or EEE	Chemistry	Respective Dept	Any Dept.	Any Dept.	Any Engg. Dept./	Respective Dept.	Mech Engg	Chemistry		Iviathematics		Paper Setting Board	aching Donartmont	r streams C	e University an	ear Progra	Sharnbasva University, Kalaburagi	
in the		Social Scien	opment Cou	ded Enginee	nce & Engin	ng Stream (C		or 2 hours of practice/activities)	udents (samu lertake one p	0	0	any other com	1 hour theory or 2	2 10 0	2 01 0	2	2	3	ω	З	З	Theory/ Lecture	-	ES & CSS i	e grouped i	Im fron	ersity,	
:11		ices and Ma		ering Design	eering Stre			ctice/activit	e branch or o project (1 ho	0	0	any other combinations of all of them.	or 2 hours tuto		lfor integr							Tutorial	Teaching hours/week	S includ			Kalak	
The Fat		and Management Course	Open Elective		am (S)			ies)	different bra ur of theory,	2	2	of them.	hours tutorial /practice/activities or	ateu)	(hater	0	2	0	0	2	2	Practical/ Drawing	ours/week	ing CIV,	Streams (cadem	ouragi	
A.		Course							inches) /tutorial	0	0		ctivities or	c	D	0	0	0	0	0	0	Activiti es		CSE, A	CES, MES	іс Үеа		
1									1 or 2	2	2	1 or 2	1 or 2		2 or 2+2	3 or 3+2	3 or 3+2	ω	ω	3+2	3+2	Duration		ncluding CIV, CSE, AI&ML, AI&DS branches)	to Four Streams (CES, MES, EES and CSS)	the Academic Year: 2022-23		
				T			500		50	50	50	50	50		5	50	50	50	50	50	50	CIE Marks	Examination	AI&D	css)	2-23		
							500		50	50	50	50	50	L C	50	50	50	50	50	50	50	SEE Marks	ation	S brai				
							1000		100	100	100	100	100	TOO	100	100	100	100	100	100	100	Total Marks		nches				
	1			*			20		4	1	1	1	1		ω	2	ω	ω	ω	4	4	Credits	-					

R

1. ٩

. •

SHARNBASVA UNIVERSITY Mechanical Engineering and Allied branches (Chemistry group)

	Applied Chemistry for Mec Engineering stream		
Course Code:		IE Marks	50
		EE Marks	50
Course Type	Theory	Total	
		Marks	100
Too shine Herry (MALes)	2	Exam	0.0
Teaching Hours/Week (L/T)	3	Hours	03
Total Hours of Pedagogy	40 hours	Credits	03
Course objectives			
 applications. To develop an intuitive undebranches of engineering. To provide students with a students with a student stude	re knowledge on principles of chem erstanding of chemistry by emphasi solid foundation in analytical reason	zing the rel	ated
societal problems.	y	8 1	
 Parious course outcomes and make Flipped class Smart class room Bended mode of leaning Interactive simulations and a Tutorial & remedial classes for Conducting Makeup classes Demonstration of concepts ei 	or needy students (not regular T/R) ther by building models or by indust shall be executed in blended mode (line courses	try visit	
	-1: Energy Sources and Batteries	(Q hr)	
	e, determination of calorific value		
lorimeter, numerical problems of		using build	
reen fuels: Introduction nowor a		fhindianal	
	lcohol, synthesis and applications of		
igh energy fuels: Production of h	lcohol, synthesis and applications of ydrogen by electrolysis of water an	d its advanta	ages.
igh energy fuels: Production of h nergy devices: Introduction, cons	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications	d its advanta	ages. Itaic cell
igh energy fuels: Production of h nergy devices: Introduction, cons ion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications n fuel cell. ion Science and Metal Finishing(8 chemical theory of corrosion,	d its advanta of Photovol 3 hr) types of c	taic cell
igh energy fuels: Production of h nergy devices: Introduction, cons- ion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro fferential metal, differential aera nbrittlement).	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications in fuel cell. ion Science and Metal Finishing(chemical theory of corrosion, ation (waterline and pitting), strea	d its advanta of Photovol 3 hr) types of c ss corrosior	taic cell corrosion n (caust
igh energy fuels: Production of h nergy devices: Introduction, cons- ion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro fferential metal, differential aera nbrittlement). rrosion control: Metal coating	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications in fuel cell. ion Science and Metal Finishing(8 chemical theory of corrosion, ation (waterline and pitting), strea -galvanization, surface conversion	d its advanta of Photovol 3 hr) types of c ss corrosion coating-an	taic cell corrosion n (caust
igh energy fuels: Production of h nergy devices: Introduction, cons- ion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro fferential metal, differential aera nbrittlement). rrosion control: Metal coating	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications in fuel cell. ion Science and Metal Finishing(8 chemical theory of corrosion, ation (waterline and pitting), strea -galvanization, surface conversion	d its advanta of Photovol 3 hr) types of c ss corrosion coating-an	taic cell corrosion n (caust
igh energy fuels: Production of h nergy devices: Introduction, cons- tion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro fferential metal, differential aera hbrittlement). rrosion control: Metal coating d cathodic protection-sacrificial a	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications in fuel cell. ion Science and Metal Finishing(& chemical theory of corrosion, ation (waterline and pitting), strea -galvanization, surface conversion anode method. Corrosion testing by	d its advanta of Photovol 3 hr) types of c ss corrosion coating-an	taic cell corrosion n (caust
igh energy fuels: Production of h nergy devices: Introduction, cons- ion battery and methanol-oxyger Module-2: Corros prrosion: Introduction, electro fferential metal, differential aera nbrittlement). rrosion control: Metal coating	lcohol, synthesis and applications of ydrogen by electrolysis of water an struction, working, and applications in fuel cell. ion Science and Metal Finishing(& chemical theory of corrosion, ation (waterline and pitting), strea -galvanization, surface conversion anode method. Corrosion testing by	d its advanta of Photovol 3 hr) types of c ss corrosion coating-an	taic cell corrosion n (caust

Metal finishing: Introduction, technological importance. Electroplating:

1. NOTE: Wherever the contact hours are not sufficient, tutorial hours can be converted to theory hours.

Electroplating of chromium (hard). Electroless plating: Introduction, electroless plating of

Module-3: Macromolecules for Engineering Applications (8 hr) Polymers:

Introduction, type of polymerization with examples condensation), molecular weight of polymers, numerical problems. Synthesis, properties and engineering applications of polyethylene (PE) and polyvinyl chloride (PVC). Fibers: Synthesis, properties and applications of Kevlar and nylon fibers.

Plastics: Introduction, synthesis, properties and industrial applications of poly(methyl methacrylate) (PMMA) and Teflon.

Polymer composites: Introduction, properties and applications of fiber reinforced polymers composites (FRPC),

Module-4: Phase Rule and Analytical Techniques (8 hr)

Phase rule: Introduction, Definition of terms: phase, components, degree of freedom, phase rule equation. Phase diagram: One component (water system) .

Analytical techniques: Introduction, principle, instrumentation of potentiometric sensors; its application in the estimation of iron, Optical sensors (colorimetry); its application in the estimation of the copper, pH-sensor (Glass electrode); its application in the determination of pH of beverages.

Module-5: Materials for Engineering Applications (8 hr)

Metals and Alloys: Introduction, Properties and application of Iron and its alloys, Ceramics: Introduction, classification based on chemical composition, properties and applications of perovskites (CaTiO₃).

Nanochemistry: Introduction, size-dependent properties of nanomaterial (surface area and catalytical), synthesis of nanoparticles by sol-gel, and precipitation method. Nanomaterials: Introduction, properties and engineering applications of carbon nanotubes and graphene.

Cours	se outcome (Course Skill Set): At the end of the course, the student will be able to:
CO1.	Identify the terms and Processes involved in scientific and engineering
CO2.	Explain the phenomena of chemistry to describe the methods of engineering Processes
CO3.	Solve the problems in chemistry that are pertinent in engineering applications
CO4.	Apply the basic concepts of chemistry to explain the chemical properties and Processes
CO5.	Analyze properties and Processes associated with chemical substances in multidisciplinary situations

April Fated

Bland Bolegaon 1?? When Git Are the

~

Assessment Details (both CIE and SEE)

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks is 50%). marks (23 marks out of 50). The minimum passing marks for the CIE is 4576 of the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are

- The CIE marks for the theory component shall be 50 marks is as detailed below .
 - Three Tests each of 15 Marks; (Third test is improvement test).
 - CIE will be conducted by the university as per scheduled time table with question • papers for the subject (duration of 1 hour 15 minutes)
 - Session wise assignments for 25 marks
 - For Seminar and library work 05 marks ۲
 - Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- 3. The question paper will have ten full questions carrying equal marks.
- 4. Each full question carries 20 marks.
- 5. There will be two full questions (with a maximum of three sub questions) from each module
- 6. Each full question will have sub questions covering all the topics under a module.
- 7. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

- 1.
- Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
- Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
 A Toyt Pool of P 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley
- 6. Engineering Chemistry I, D. Grour Krishana, Vikas Publishing 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin & A.C. Arsenault, RSC Publishing, 2005.
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, Takatoshi Tsujimura, Wiley-Blackwell, 2012
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, Elzbieta Frackowiak, Wiley-VCH; 1st edition, 2013.
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda,
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher,

	COs and POs Mapping (Individual teacher has to fill up)
	<u>https://interestingengineering.com/science</u>
	<u>https://demonstrations.wolfram.com/topics.php</u>
	<u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
Act	tivity Based Learning (Suggested Activities in Class)/ Practical Based learning
	<u>https://www.youtube.com/watch?v=wRAo-M8xBHM</u>
	<u>https://www.youtube.com/watch?v=1xWBPZnEJk8</u>
	 <u>https://www.youtube.com/watch?v=X9GHBdyYcyo</u>
	 https://www.youtube.com/watch?v=j5Hml6KN4TI
	<u>9IbHrDMjHWWh</u>
	 <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-</u>
	 https://www.youtube.com/watch?v=faESCxAWR9k
	• <u>https://ndl.iitkgp.ac.in/</u>
	• https://nptel.ac.in/courses/104/103/104103019/
	 https://nptel.ac.in/downloads/122101001/
	<u>http://libgen.rs/</u>
We	eb links and Video Lectures (e-Resources):
29.	Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co.
	Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd.,
	Reprint, 2015.
27.	"Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth
	Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah & Pushpa Iyengar., Subash Publications, 5th Edition, 2014
26.	Principles of nanotechnology, Phanikumar, Scitech publications, 2 nd Edition, 2010.
25.	Principles of papotochnology Planting
⊷ .T,	Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3 rd
24	Nanotocha-la a si
-0.	Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1 st Edition, 2002.
22	Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021 Engineering Chemistry, N P Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers,
21.	Ath Edition
21	Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020 Polymer Science, V. R. Gowarika, and Dr. L. Sathiyanarayanan, Nirali
20.	Frinciples of Instrumental Analysis Davelant and
	Takaslian 2020
19.	High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010 Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, Nirali Prakashan, 2020
	& Sons, 2010
18.	High Performance Metallic Material C
05	Bengaluru, ISBN 978-93-85155-70-3, 2022 High Performance Metallic M

			COS all	u i 05 M	appin	g (mur	luuai u	cacifici	nas to	ini upj		
						Р	0					
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	1	1				1					
CO2	3	1	1				1					
CO3	3	1	1				1					
CO4	3	1	1				1					
CO5	3	1	1				1					

-

Prens Frens 4.?. Wh Fit. Balagaoo APU

SHARNBASVA UNIVERSITY

Electrical & Electronics Engineering and Allied branches (Chemistry group)

Course Code: 22CHEE12/22 CIE Marks 5 Course Type (Theory) Total Marks 10 Teaching Hours/Week (L/T) 3 Exam Hours 0 Total Hours of Pedagogy 40 hours Credits 0 Total Hours of Pedagogy 40 hours Credits 0 Total Hours of Pedagogy 40 hours Credits 0 Course objectives To enable students to acquire knowledge on principles of chemistry for engineer applications. To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. To provide students with a solid foundation in analytical reasoning required to s societal problems. Teaching-Learning Process These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective Flipped class Smart class room Bended mode of leaning Interactive simulations and animation Tutorial & remedial classes for needy students (not regular T/R) Conducting Makeup classes Demonstration of concepts either by building models or by industry visit Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) Use of ICT - Online videos, online courses Daily learn	Course Title:	Chemistry for Electrica Engineering stream	l and Electronics	5
Course Type SEE Marks 5 Total Marks 10 Teaching Hours/Week (L/T) 3 Exam Hours 0 Total Hours of Pedagogy 40 hours Credits 0 Total Hours of Pedagogy 40 hours Credits 0 Course objectives • To enable students to acquire knowledge on principles of chemistry for engineer applications. • To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. • To provide students with a solid foundation in analytical reasoning required to s societal problems. Teaching-Learning Process • These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective • • • Flipped class • Smart class room • Bended mode of leaning • • Interactive simulations and animation • • Tutorial & remedial classes for needy students (not regular T/R) • • • Conducting Makeup classes • • Demonstration of concepts either by building models or by industry visit • Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) •	Course Code:	22CHEE12/22	CIE Marks	50
Control Type (Theory) Total Marks 10 Teaching Hours/Week (L/T) 3 Exam Hours 0 Total Hours of Pedagogy 40 hours Credits 0 Course objectives 0 0 0 To enable students to acquire knowledge on principles of chemistry for engineer applications. 0 0 To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. 0 0 To provide students with a solid foundation in analytical reasoning required to s societal problems. 0 Teaching-Learning Process These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective Flipped class Smart class room 0 Bended mode of leaning 1 1 Interactive simulations and animation Tutorial & remedial classes for needy students (not regular T/R) 0 Conducting Makeup classes Demonstration of concepts either by building models or by industry visit 1 Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) 0 0 Use of ICT - Online videos, online courses Daily learning	Course Two		and the second se	50
Teaching Hours/Week (L/T) Image: Teaching Hours/Week (L/T) Image: Teaching Hours/Hours Exam Hours 0 Total Hours of Pedagogy 40 hours Credits 0 Course objectives • To enable students to acquire knowledge on principles of chemistry for engineer applications. • To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. • To provide students with a solid foundation in analytical reasoning required to s societal problems. Teaching-Learning Process • Tacaching-Learning Process • The searce samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective • Flipped class • Smart class room Bended mode of leaning • Interactive simulations and animation • Tutorial & remedial classes for needy students (not regular T/R) • Conducting Makeup classes • Demonstration of concepts either by building models or by industry visit • Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) • Use of ICT – Online videos, online courses • Daily learning through assignments MODULE 1: Conducting Materials and polymers (Bhr) Conductors: Introduction, production of electronic grade silicon-Czochralski pro CZ) and Float Zone (FZ) methods. Olymers: Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers - synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. <tr< td=""><td>course rype</td><td>(Theory)</td><td>and all all the second and the second and the</td><td></td></tr<>	course rype	(Theory)	and all all the second and the second and the	
Items Journal Jours <		and the same time to be a build and the	Marks	100
(L/T) Hours o Total Hours of Pedagogy 40 hours Credits 0 Course objectives • To enable students to acquire knowledge on principles of chemistry for engineer applications. • To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. • To provide students with a solid foundation in analytical reasoning required to s societal problems. Teaching-Learning Process • These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective • Flipped class • Smart class room • Bended mode of leaning • Interactive simulations and animation • Tutorial & remedial classes for needy students (not regular T/R) • Conducting Makeup classes • Demonstration of concepts either by building models or by industry visit • Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) • Use of ICT - Online videos, online courses • Daily learning through assignments MODULE 1: Conducting Materials and polymers (Bhr) Conductors: Introduction, production of electronic grade silicon-Czochralski pro CZ) and Float Zone (FZ) methods. • Supplications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactuu ouble-sided PCB.	Teaching Hours/Week	3	Exam	0.0
Total flotts of redugggy Credits 0 Course objectives • To enable students to acquire knowledge on principles of chemistry for engineer applications. • To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. • To provide students with a solid foundation in analytical reasoning required to s societal problems. • Teaching-Learning Process These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective • Flipped class • Smart class room • Bended mode of leaning • Interactive simulations and animation • Tutorial & remedial classes for needy students (not regular T/R) • Conducting Makeup classes • Demonstration of concepts either by building models or by industry visit • Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) • Use of ICT - Online videos, online courses • Daily learning through assignments MODULE 1: Conducting Materials and polymers (Bhr) Conductors and Insulators: Introduction, principle with examples. remiconductors. Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers - synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating - Introduction, Electroless plating of copper in the manufactur ouble-sided PCB.		5	Hours	03
 To enable students to acquire knowledge on principles of chemistry for engineer applications. To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering. To provide students with a solid foundation in analytical reasoning required to a societal problems. Teaching-Learning Process These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective Flipped class Smart class room Bended mode of leaning Interactive simulations and animation Tutorial & remedial classes for needy students (not regular T/R) Conducting Makeup classes Demonstration of concepts either by building models or by industry visit Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) Use of ICT - Online videos, online courses Daily learning through assignments MODULE 1: Conducting Materials and polymers (8hr) Conductors and Insulators: Introduction, principle with examples. Cemiconductors: Introduction, polymers - synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating - Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries. 	Total Hours of Pedagogy	40 hours	Credits	03
 Experiments in laboratories shall be executed in blended mode (conventional or r conventional methods) Use of ICT – Online videos, online courses Daily learning through assignments MODULE 1: Conducting Materials and polymers	 To develop an intuitive understa branches of engineering. To provide students with a solid societal problems. Teaching-Learning Process These are samples trategies, which tea various course outcomes and make Tea Flipped class Smart class room Bended mode of leaning Interactive simulations and anima Tutorial & remedial classes for ne Conducting Makeup classes Demonstration of concepts either 	anding of chemistry by em foundation in analytical r cher can use to accelerate aching–Learning more effe ation eedy students (not regular	phasizing the relation easoning required the attainment of ctive T/R) ndustry visit	ated I to so the
(8hr) Conductors and Insulators: Introduction, principle with examples. Semiconductors: Introduction, production of electronic grade silicon-Czochralski pro CZ) and Float Zone (FZ) methods. Polymers: Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers – synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	 Experiments in laboratories shall conventional methods) Use of ICT – Online videos, online Daily learning through assignmen 	be executed in blended m courses its	ode (conventiona	l or no
Gemiconductors: Introduction, production of electronic grade silicon-Czochralski pro CZ) and Float Zone (FZ) methods. Polymers: Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers – synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N		(8hr)		
CZ) and Float Zone (FZ) methods. Polymers: Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers – synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. <u>MODULE 2: Battery Technology and Sensors(8hr)</u> atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	Somiconductors and insulators: Introduct	ion, principle with example	es.	
Polymers: Introduction, Molecular weight - Number average, Weight average umerical problems.Conducting polymers – synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	[CZ] and Float Zone (FZ) methods.	ction of electronic grade s	ilicon-Czochralsk	i proce
umerical problems.Conducting polymers – synthesis and conducting mechanism olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.		weight - Number avera	ge. Weight aver	200 2
olyacetylene. Preparation, properties and commercial applications of graphene oxide. CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. <u>MODULE 2: Battery Technology and Sensors(8hr)</u> atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	numerical problems.Conducting polyr	ners – synthesis and o	onducting mech	uge al miem
CB: Electroless plating – Introduction, Electroless plating of copper in the manufactur ouble-sided PCB. MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	olyacetylene, Preparation, properties	and commercial application	ns of graphana and	
MODULE 2: Battery Technology and Sensors(8hr) atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.		commercial applicatio	ns of graphene OX	ida
atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	CB: Electroless plating – Introduction	Flectroless plating of any	nor in the	ide.
atteries: Introduction to batteries, construction, working and applications of N attery, Lithium ion and Sodium ion batteries.	PCB: Electroless plating – Introduction, louble-sided PCB.	, Electroless plating of cop	oper in the manuf	ide. acture
attery, Lithium ion and Sodium ion batteries.	CB: Electroless plating – Introduction, louble-sided PCB. 	, Electroless plating of cop Technology and Sensor	oper in the manuf	acture
And the second s	CB: Electroless plating – Introduction, louble-sided PCB. MODULE 2: Battery Satteries: Introduction to batteries,	, Electroless plating of cop Technology and Sensor construction, working au	oper in the manuf	acture
3 Fatil Band Elatil 1 ? WW Q	CB: Electroless plating – Introduction, ouble-sided PCB. MODULE 2: Battery catteries: Introduction to batteries, attery, Lithium ion and Sodium ion bat	, Electroless plating of cop Technology and Sensor construction, working an teries.	oper in the manuf s(8hr) nd applications	acture
3 Fitter Board Flotil 4 2	CB: Electroless plating – Introduction, ouble-sided PCB. <u>MODULE 2: Battery</u> atteries: Introduction to batteries, attery, Lithium ion and Sodium ion bat	, Electroless plating of cop Technology and Sensor construction, working an teries.	oper in the manuf s(8hr) nd applications	acture
	CB: Electroless plating – Introduction, ouble-sided PCB. MODULE 2: Battery atteries: Introduction to batteries, attery, Lithium ion and Sodium ion bat	, Electroless plating of cop Technology and Sensor construction, working an teries.	oper in the manuf s(8hr) nd applications	acture
	CB: Electroless plating – Introduction, ouble-sided PCB. MODULE 2: Battery satteries: Introduction to batteries, attery, Lithium ion and Sodium ion bat	, Electroless plating of cop Technology and Sensor construction, working an teries.	oper in the manuf s(8hr) nd applications	acture

1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

polymer electrolyte membrane (PEM) fuel cell.

Sensors: Introduction, working principle and applications of Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Sensors for the measurement of dissolved oxygen (DO). Electrochemical gas sensors for SOx and NOx.

MODULE 3: Corrosion Science and Energy Conversion Systems(8hr)

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion-differential metal and differential aeration. Corrosion control - galvanization, anodization and sacrificial anode method. Corrosion Penetration Rate (CPR) - Introduction and numerical problem.

Electrode System: Introduction, types of electrodes. Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode - Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell– Definition, construction and Numerical problems.

Solar Energy: Introduction, importance of solar PV cell, construction and working of solar PV cell, advantages and disadvantages.

MODULE 4: Display and Memory Systems (8hr)

Display Systems: Photoactive and electroactive materials, Nanomaterials and organic materials used in optoelectronic devices. Liquid crystals (LC's) - Introduction, classification, properties and application in Liquid Crystal Displays (LCD's). Properties and application of Organic Light Emitting Diodes (OLED's) and Quantum Light Emitting Diodes (QLED's), Light emitting electrochemical cells.

Memory: Introduction, Basic concepts of electronic memory, History of organic/polymer electronic memory devices, Classification of electronic memory devices, types of organic memory devices (organic molecules, polymeric materials, organic-inorganic hybrid materials).

MODULE 5: Nanomaterials, E-Waste Management and Analytical Techniques (8hr)

Nanomaterials : Introduction, size dependent properties of nanomaterials (surface area, catalytic and electrical), preparation of NPs by sol-gel and precipitation methods

E-Waste: Introduction, sources of e-waste, Composition, Characteristics, and Need of ewaste management. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery: Different approaches of recycling (separation, thermal treatment)

Analytical Techniques: Introduction, principle and instrumentation of Colorimetric sensors; its application in the estimation of copper, Potentiometric sensors; its application in the estimation of iron.

 Course outcome (Course Skill Set) At the end of the course the student will be able to: Identify the terms and processes involved in scientific and engineering Processes Explain the phenomena of chemistry to describe the methods of engineering Processes CO3. Solve for the problems in chemistry that are pertinent in engineering applications Processes Apply the basic concepts of chemistry to explain the chemical properties and Processes Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (Doth CIE and SEE) 	Identify the terms and processes involved in scientific and engineering Explain the phenomena of chemistry to describe the methods of engineering Processes Solve for the problems in chemistry that are pertinent in engineering applications Apply the basic concepts of chemistry to explain the chemical properties and processes Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50).
 Identify the terms and processes involved in scientific and engineering Explain the phenomena of chemistry to describe the methods of engineering Processes CO2. Explain the phenomena of chemistry to describe the methods of engineering Processes CO3. Solve for the problems in chemistry that are pertinent in engineering applications processes CO4. Apply the basic concepts of chemistry to explain the chemical properties and Processes associated with chemical substances in Multidisciplinary situations Assessment Details (Doth CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). The substances of 100 in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 50) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks For Seminar and library work 05 marks. Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have to full ques	Identify the terms and processes involved in scientific and engineering Explain the phenomena of chemistry to describe the methods of engineering Processes Solve for the problems in chemistry that are pertinent in engineering applications Apply the basic concepts of chemistry to explain the chemical properties and processes Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50).
 Identify the terms and processes involved in scientific and engineering Explain the phenomena of chemistry to describe the methods of engineering Processes CO2. Explain the phenomena of chemistry to describe the methods of engineering Processes CO3. Solve for the problems in chemistry that are pertinent in engineering applications processes CO4. Apply the basic concepts of chemistry to explain the chemical properties and Processes associated with chemical substances in Multidisciplinary situations Assessment Details (Doth CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). The substances of 100 in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 50) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks For Seminar and library work 05 marks. Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have to full ques	Identify the terms and processes involved in scientific and engineering Explain the phenomena of chemistry to describe the methods of engineering Processes Solve for the problems in chemistry that are pertinent in engineering applications Apply the basic concepts of chemistry to explain the chemical properties and processes Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50).
 CO2. Explain the phenomena of chemistry to describe the methods of engineering Processes CO3. Solve for the problems in chemistry that are pertinent in engineering applications processes CO4. Apply the basic concepts of chemistry to explain the chemical properties and processes associated with chemical substances in Multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (18 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). The substances in the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 500) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 500) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks: Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. 3. The question paper will have to amarks. 4. Each full question argies 20 marks. 5. There will be towofull questions (with a maximu	Explain the phenomenaprocessesinvolvedinscientificandengineeringProcessesSolve for the problems in chemistry to describe the methods of engineeringApply the basic concepts of chemistry that are pertinent in engineering applicationsprocessesAnalyze properties andprocessesAnalyze properties andprocessesAssessment Details (both CIE and SEE)The weightage of Continuous Internal Evaluation (CIE) is 50% and for SemesterEnd Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum
 CO3. Solve for the problems in chemistry to describe the methods of engineering CO4. Apply the basic concepts of chemistry that are pertinent in engineering applications processes CO5. Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE warks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks. For Seminar and library work 05 marks. Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be p	Solve for the problems in chemistry to describe the methods of engineering Apply the basic concepts of chemistry that are pertinent in engineering applications processes Analyze properties and processes Analyze properties and processes Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum
 CO3. Solve for the problems in chemistry to describe the methods of engineering CO4. Apply the basic concepts of chemistry that are pertinent in engineering applications processes CO5. Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks. Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced	Solve for the problems in chemistry to describe the methods of engineering Apply the basic concepts of chemistry that are pertinent in engineering applications processes Analyze properties and processes associated with chemical properties and multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum
 Apply the basic concepts of chemistry to explain the chemical properties and processes CO5. Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the marks (18 marks out of 50). The minimum passing marks for the SEE is 35% of the the credits allotted to each subject/ course if the student secures not less than 35% (40 marks out of 100) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks For Seminar and library work 05 marks Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have the full questions carrying equal marks. Each full question carries 20 marks. There wills to two full qu	Apply the basic concepts of chemistry that are pertinent in engineering applications processes Analyze properties and processes associated with chemical properties and multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The second sec
 COS. Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (13 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (14 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. The question paper will have the full questions carrying equal marks. Each full question carries 20 marks. The will be two full questions (with a maximum of three sub questions) from each module. The students will have to answer five full questions covering all the topics under a module. 	Analyze properties and processes associated with chemical substances in multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the CIE is 45% of the maximum
multidisciplinary situations Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below • Three Tests each of 15 Marks; (Third test is improvement test). • CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) • Session wise assignments for 25 marks • For Seminar and library work 05 marks • Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) 1. The outent papers for the subject (duration 03 hours) 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. 3. The question paper will have ten full questions carrying equal marks. 4. Each full	<u>multidisciplinary situations</u> Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester marks (23 marks out of 50). The minimum passing marks for the CIE is 45% of the maximum
 Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the semester-end examination (SEE). The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE shall be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module. The students will have to answer five full questions carrying all the topics under a module. 	Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester marks (23 marks out of 50). The minimum passing marks for the CIE is 45% of the maximum
 The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject / course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination (CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE equestion paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The weight reduced to 50 marks. The view of the subject (furtion 03 hours) The SEE question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. The weight be two full questions (with a maximum of three sub questions) from each module. The students will have to answer five full questions covering all the topics under a module. 	The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the CIE is 45% of the maximum
 End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. The students will have to answer five full questions covering all the topics under a module. The students will have to answer five full questions covering all the topics under a module. 	End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum
 making (25) marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions covering all the topics under a module. 	13 (25 marks out of 50) The second of the CIL is 45/001 me maximum
 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The genesition paper will have ten full questions carrying equal marks. Each full question earlies 20 marks. There will be two full questions (with a maximum of three sub questions) from each module. 	maximum more (10 100). The minimum passing marks for the SEE is 250(
 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The guestion paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module 	ination marks (18 marks out of 50).
 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions care and due to a module. 	A student shall be doomed to be used to be a start of the
 but of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) The SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions care of the subject of the subject (with a maximum of three sub questions) from each module 	Marks out of 50) in the same ubject/ course if the student secures not less than 35% (18
 (Semester End Examination) taken together. Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. 	out of 100) in the sum and total of the GUE (GDE), and a minimum of 40% (40 marks
 Continuous Internal Evaluation(CIE): The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions covering all the topics under a module. 	(Semester End Examination) taken to active (Continuous Internal Evaluation) and SEE
 The CH2 shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions call the topics under a module. 	Continuous Internal Evaluation (CIE)
 The CIE marks for the theory component shall be 50 marks is as detailed below Three Tests each of 15 Marks; (Third test is improvement test). CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selection set for a module. 	The CIL shall be conducted by the course terral and
 CIE will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selecting one full we table. 	The CIE marks for the theory component shall be 50 mert
 Che will be conducted by the university as per scheduled time table with question papers for the subject (duration of 1 hour 15 minutes) Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions selection selection of the subject of the subject of the subject of the topics under a module. 	• Three Tests each of 15 Marks; (Third test is improvement test)
 Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have to answer five full questions selecting one full with a maximum of the set of the subject and the topics under a module. 	CIE will be conducted by the university as per schoduled time of the
 Session wise assignments for 25 marks For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. 3. The question paper will have ten full questions carrying equal marks. 4. Each full question carries 20 marks. 5. There will be two full questions (with a maximum of three sub questions) from each module 6. Each full question will have to answer five full questions selecting are full and the sub questions carry for a module. 	a more subject (duration of 1 nour 1) minutes)
 For Seminar and library work 05 marks Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. 3. The question paper will have ten full questions carrying equal marks. 4. Each full question carries 20 marks. 5. There will be two full questions (with a maximum of three sub questions) from each module 6. Each full question will have to answer five full questions selecting one followed and the selections of the selections of the selection of the selection	• Session wise assignments for 25 marks
 Attendance 5 marks (95% to 100%), 04 marks (85% to 94%) Semester End Examination (SEE) 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. 3. The question paper will have ten full questions carrying equal marks. 4. Each full question carries 20 marks. 5. There will be two full questions (with a maximum of three sub questions) from each module 6. Each full question will have to answer five full questions selecting one full 	• For Seminar and library work 05 marks
 Schlester End Examination (SEE) Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selecting one follow will a selecting one follow willow willo	• Attendance 5 marks (95% to 100%), 04 marks (85% to 04%)
 The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selecting one full will a statement. 	Demester Fill Examination (QFF)
 The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks. The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selecting one follow will a selectin	uestion papers for the rule in the rule in the scheduled time table, with
 The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions selecting one full a student. 	
 The question paper will have ten full questions carrying equal marks. Each full question carries 20 marks. There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions, selecting and full and the topics. 	proportionately reduced to 50 marks
 5. There will be two full questions (with a maximum of three sub questions) from each module 6. Each full question will have sub questions covering all the topics under a module. 7. The students will have to answer five full questions selecting one full a student. 	
 There will be two full questions (with a maximum of three sub questions) from each module Each full question will have sub questions covering all the topics under a module. The students will have to answer five full questions, selecting and full and the sub questions. 	20 Each run guestion carries 20 marks
6. Each full question will have sub questions covering all the topics under a module.7. The students will have to answer five full questions, selecting one full and the selecting one full and t	5. There will be two full questions (with a maximum of three sub questions) from a l
students will have to answer five full questions selecting one full	
and students will have to answer five full questions selecting one full	7. The student will have sub questions covering all the topics under a module.
each module.	students will have to answer five full questions, selecting one full
P-1 N	1 Jours
- Jabour	XIIII
Ambound	
Andered	applie - 1
Amband 1?	(Elaure IN) DOIN
Andered 4:	No contraction of the second sec
Andrew 1:	Bud (FF
ERotil Will Dight	
Andered 1: , , , , , , , , , , , , , , , , , ,	
And the him and	
Andered here and and here and	

Suggested Learning Resources:

- Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)
- 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 2. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
- 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd. 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley 6. Engineering Chemistry – I, D. GrourKrishana, Vikas Publishing
- 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd.,
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International
- Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin& A.C. Arsenault, RSC Publishing, 2005.
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, TakatoshiTsujimura, Wiley-Blackwell, 2012
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, ElzbietaFrackowiak, Wiley-VCH; 1st edition, 2013.
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda,
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The

National Academies Press. doi: 10.17226/4782.

- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022
- 18. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010
- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, NiraliPrakashan, 2020
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1st Edition, 2002.
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd Edition 2014
- 25. Principles of nanotechnology, Phanikumar, Scitech publications, 2nd Edition, 2010.
- 26. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah& Pushpa Iyengar., Subash Publications, 5th Edition, 2014
- 27. "Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint, 2015.
- 28. Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd.,
- 29. Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co.

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- https://nptel.ac.in/courses/104/103/104103019/
- https://ndl.iitkgp.ac.in/
- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-9lbHrDMjHWWh</u>
- <u>https://www.youtube.com/watch?v=j5Hml6KN4TI</u>
- <u>https://www.youtube.com/watch?v=X9GHBdyYcyo</u>
- <u>https://www.youtube.com/watch?v=1xWBPZnEJk8</u>
- https://www.youtube.com/watch?v=wRAo-M8xBHM

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- <u>https://demonstrations.wolfram.com/topics.php</u>
- <u>https://interestingengineering.com/science</u>

			COs an	d POs N	lappin	g (Indiv	vidual t	eacher	has to	fill up)		
						P						
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	1	1				1					
CO2	3	1	1				1					
CO3	3	1	1				1					
CO4	3	1	1				1					
CO5	3	1	1				1					

i al

SHARNBASVA UNIVERSITY Engineering Chemistry Lab

Course Title:	Engineering Chemistry Lab (Common for all Branches /Streams)								
Course Code:	22CHEL18/28	CIE Marks	50						
Gourge court		SEE Marks	50						
Course Type	(Practical)	Total Marks	100						
Teaching Hours/Week (Practical)	2	Exam Hours	02						
Total Hours of Pedagogy	38 hours	Credits	01						

Course Objectives:

- To provide students with practical knowledge of
- Quantitative analysis of materials by classical methods of analysis.
- Instrumental methods for developing experimental skills in building technicalcompetence.

Instrumental Experiments

- 1. Potentiometric estimation of FAS using standard K₂Cr₂O₇ solution.
- 2. Conductometric estimation of acid mixture.
- 3. Determination of Viscosity co-efficient of the given liquid using Ostwald's viscometer.
- 4. Colorimetric estimation of estimation of copper.
- 5. Determination of pKa of the given weak acid using pH meter.

Volumetric Experiments

- 1. Estimation of total hardness of water by EDTA complexometric method.
- 2. Estimation of CaO in cement solution by rapid EDTA method.
- 3. Determination of percentage of Copper in brass using standard sodium thiosulphatesolution.
- 4. Determination of COD of waste water.
- 5. Estimation of Iron in haematite ore solution using standard K₂Cr₂O₇ solution by externalindicator method.

Demonstration Experiments

1. Synthesis of nanomaterials by precipitation method.

2. Determination of percentage of chlorine in bleaching powder by lodometric method

On completion of this course, students will have the knowledge in, CO1: Principles and procedure.(Knowledge)

CO2: Understanding the reactions.(Comprehension) CO3: Applications

CO 4: Handling different types of instruments for analysis of materials using small quantities of materials involved for quick and accurate results (Analysis) CO5: Carrying out different types of titrations for estimation of concerned in materials using

comparatively more quantities of materials involved for good results (Synthesis)

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the practical component

- On completion of every experiment in the laboratory, the students shall be evaluated and marks shall be awarded on the same day.
- The 25 marks are for conducting the experiment and preparation of the laboratory record,10 marks for individual evaluation (which includes viva voce), (the average of total experiments}
- The 15 marks shall be for the test conducted at the end of the semester, for the subject (duration of 1 hour 15 minutes)

SEE for the practical component

- SEE marks for the practical course is 50 marks
- All laboratory experiments are to be included for the practical exam
- Break up marks and the instructions printed on the cover page of the answer script to be strictly adhered to by the examiners
- Students can pick one question (experiment) from the questions lot prepared by the . examiners
- General rubrics suggested for SEE are mentioned here write up 15%, conduction procedure and resulst is 70% and viva voce 10% of maximum marks.
- Practical SEE will be conducted by University as per the scheduled time table, for the subject (duration 02 hours)

Reference Books:

- G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, "Vogel's A I, Text Book ofQuantitative analysis, Dorling Kindersley (Idia) Pvt. Ltd. 35th Edition 2012.
- 2. O.P. Vermani & Narula, "Theory and Practice in Applied Chemistry", New Age InternationalPublishers.
- 3. Gary D. Christian, "Analytical chemistry", 6th Edition, Wiley India.2015

SHARNBASVA UNIVERSITY **Civil Engineering and Allied branches** (Chemistry group)

Course Title:	Applied Chemistr S	y for Civil Engin tream	neering	
Course Code:	22CHEC12/22	CIE Marks	50	
Course Tune		SEE Marks	50	
Course Type	Theory	Total Marks	100	
Teaching Hours/Week (L/T)	3	Exam Hours	03	
Course Type Teaching Hours/Week (L/T) Total Hours of Pedagogy	40 hours	Credits	03	

Course objectives

- To enable students to acquire knowledge on principles of chemistry for engineering applications.
- To develop an intuitive understanding of chemistry by emphasizing the related branches of engineering.
- To provide students with a solid foundation in analytical reasoning required to solve societal problems.

Teaching-Learning Process Teaching-Learning Process

These are samples trategies, which teacher can use to accelerate the attainment of the various course outcomes and make Teaching-Learning more effective

- Flipped class
- Smart class room
- Bended mode of leaning
- Interactive simulations and animation
- Tutorial & remedial classes for needy students (not regular T/R)
- Conducting Makeup classes
- Demonstration of concepts either by building models or by industry visit
- Experiments in laboratories shall be executed in blended mode (conventional or nonconventional methods)
- Use of ICT Online videos, online courses
- Daily learning through assignments

Module-1: Structural Materials (8 hr)

Metals and Alloys: Introduction, Properties and application of Iron and its alloys, Cement: Introduction, composition, properties, classification, manufacturing process of cement, process of setting and hardening of cement, additives for cement and testing of cement.

Refractories: Introduction, classification based on chemical composition, properties and application of refractory materials (clay bricks. silicon bricks, casting materials)

Glass: Introduction, Composition, Types, Preparation of Soda-lime glass, properties and applications of Soda-lime glass.

Module-2: Energy Conversion Systems and Corrosion (8 hr)

Energy conversion: Fuel Cells: Introduction, construction, working and applications of methanol-oxygen and polymer electrolyte membrane (PEM) fuel cell. Storage devices: Introduction, construction and working of Li-ion battery.

13

Bad Bdegar

1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

Corrosion: Introduction, electrochemical corrosion of steel in concrete, types (differential metal and aeration), Stress corrosion in civil structures, corrosion control (design and selection of materials, galvanization, anodization and sacrificial anode method).

Module-3: Nanotechnology and Water Technology (8 hr)

Nanotechnology: Introduction, size dependent properties of nanomaterial (surface area and catalytic), Synthesis of nanomaterial by sol-gel method and precipitation method.

Nanomaterials: Introduction, properties and engineering applications of carbon nanotubes, graphene and nanomaterials for water treatment (Metal oxide).

Water technology: Introduction, water parameters, hardness of water, determination of temporary, permanent and total hardness by EDTA method, numerical problems, softening of water by ion exchange method, desalination of water by reverse osmosis, determination ofCOD, numerical problems.

Module-4:Polymer and Composites (8 hr)

Polymer: Introduction, type of polymerization with examples (Addition and condensation), molecular weight of polymers, numerical problems. Synthesis, properties and engineering applications of polyethylene (PE) and polyvinyl chloride (PVC).

Fibers and composites: Synthesis, properties and applications of Kevlar and nylon fibers. Adhesives: Introduction, properties and applications of epoxy resin.

Biodegradable polymers: Synthesis of polylactic acid (PLA) and their applications.

Module-5: Phase Rule and Analytical Techniques (8 hr)

Phase rule: Introduction, Definition of terms: phase, components, degree of freedom, phase rule equation. Phase diagram: One component (water system).

Analytical techniques: Introduction, principle, instrumentation of potentiometric sensors; its application in the estimation of iron, Optical sensors (colorimetry); its application in the estimation of the copper, pH-sensor (Glass electrode); its application in the determination of pH of beverages.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

-	
C01.	i stati i stat
	applications
CO2.	Explain the phenomena of chemistry to describe the methods of engineering
	processes
CO3.	Solve for the problems in chemistry that are pertinent in engineering applications
CO4.	Apply the basic concepts of chemistry to explain the chemical properties and
	processes
CO5.	Analyze properties and Processes associated with chemical substances in
	multidisciplinary situations

and

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The suggested components of CIE for Theory course are

The CIE marks for the theory component shall be 50 marks is as detailed below

- Three Tests each of 15 Marks; (Third test is improvement test). •
- CIE will be conducted by the university as per scheduled time table with question • papers for the subject (duration of 1 hour 15 minutes)
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks •
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

Semester End Examination (SEE)

- 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- 3. The question paper will have ten full questions carrying equal marks.
- 4. Each full question carries 20 marks.

Bolegaro. h:

- 5. There will be two full questions (with a maximum of three sub questions) from each module
- 6. Each full question will have sub questions covering all the topics under a module.
- 7. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 2. Engineering Chemistry, Satyaprakash& Manisha Agrawal, Khanna Book Publishing, Delhi
- 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley
- 6. Engineering Chemistry I, D. GrourKrishana, Vikas Publishing
- 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd.,
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin& A.C. Arsenault, RSC
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, TakatoshiTsujimura, Wiley–Blackwell , 2012 Beguin,
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The
- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, National Academies Press. doi: 10.17226/4782.
- Bengaluru, ISBN 978-93-85155-70-3, 2022

18. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley

- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan,
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers,
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition. 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1st Edition,
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd
- 25. Principles of nanotechnology, Phanikumar, Scitech publications, 2nd Edition, 2010.
- 26. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah& Pushpa Iyengar., Subash Publications, 5th Edition, 2014
- 27. "Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint, 2015.
- 28. Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd.,
- 29. Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co.

Web links and Video Lectures (e-Resources):

47= APU

- http://libgen.rs/
- https://nptel.ac.in/downloads/122101001/
- https://nptel.ac.in/courses/104/103/104103019/
- https://ndl.iitkgp.ac.in/
- https://www.youtube.com/watch?v=faESCxAWR9k ė
- https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-91bHrDMjHWWh
- https://www.youtube.com/watch?v=j5Hml6KN4TI
- https://www.youtube.com/watch?v=X9GHBdyYcyo •
- https://www.youtube.com/watch?v=1xWBPZnEJk8 ٠
- https://www.youtube.com/watch?v=wRAo-M8xBHM ٠

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- https://www.vlab.co.in/broad-area-chemical-sciences •
- https://demonstrations.wolfram.com/topics.php •
- https://interestingengineering.com/science ٠

			COs an	d POs M	lappin	g (Indiv	vidual t	eacher	has to	fill up)		
РО												
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
C01	3	1	1				1					
CO2	3	1	1				1					
CO3	3	1	1				1					
C04	3	1	1				1					
C05	3	1	1				1					
-												

SHARNBASVA UNIVERSITY

(Chem	istry group)		
Course Title:	Applied Chemistry	for Computer S	cience 8
Course Code:	22CHES12/22	ring stream CIE Marks	F 0
		SEE Marks	50
Course Type	(Theory)	Total	50
	(meory)	Marks	100
		Exam	
Teaching Hours/Week (L/T)	3	Hours	3
Total Hours of Pedagogy	40 hours	Credits	3
Course objectives			
 To develop an intuitive understanding branches of engineering. To provide students with a solid found societal problems. Teaching-Learning Process These are samples trategies, which teacher covarious course outcomes and make Teaching Flipped class Smart class room Bended mode of leaning Interactive simulations and animation Tutorial & remedial classes for needy st Conducting Makeup classes Demonstration of concepts either by bu Experiments in laboratories shall be experiments 	lation in analytical reas an use to accelerate the z-Learning more effecti udents (not regular T/1 ilding models or by ind	soning required e attainment of t ve R)	to solve
conventional methods)	ceated in Dichaed mou	e (conventional	or non-
• Use of ICT – Online videos, online course	es		
 Daily learning through assignments 	가장 수가 책을 가 물었는 것이.		
MODULE 1: Energy Storage	Systems and Sensors	(8hr)	
Energy Storage Systems: Introduction to ba	tteries, construction, w	orking and appl	ications
f Ni-MH battery, Lithium ion and Sodium ion	batteries.		
ensors: Introduction, working principle a	nd applications of Co	nductometric s	sensors.
lectrochemical sensors, Thermometric ser	nsors, and Optical ser	isors. Sensors	for the
neasurement of dissolved oxygen (DO). Elect	rochemical gas sensors	for SOx and NO	X.
MODULE 2: Display and	Memory Systems (8h	r)	
isplay Systems: Photoactive and electroa	ctive materials. Nano	materials and	organic
naterials used in optoelectronic devices. Liqu	id crystals (LC's) - Intra	duction classif	fication
roperties and application in Liquid Crystal D	isplays (LCD's) Propos	tios and anali-	ation of
rganic Light Emitting Diodes (OLED's) and Q	uantum Light Emitting	Diodes (OLDE)	
nitting electrochemical cells.	auntum Light Emitting	Diodes (QLED's	ij, Light
	oloctronia		
emory: Introduction, Basic concepts of ganic/polymer electronic memory devices	Classifie at a final	History of	
Dover a polymon clering in the more deviced	L Lassification of alast	1 a m 1 a m 1	

Computer Science and Engineering and allied branches (Chemistry group)

N organic/polymer electronic memory devices, Classification of electronic memory devices,

(0

E

1. NOTE: Wherever the contact hours is not sufficient, tutorial hour can be converted to theory hours

types of organic memory devices (organic molecules, polymeric materials, organicinorganic hybrid materials).

MODULE 3: Electrode System and Corrosion(8hr)

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion-differential metal and differential aeration. Corrosion control - galvanization, anodization and sacrificial anode method. Corrosion Penetration Rate (CPR) - Introduction and numerical problem.

Electrode System: Introduction, types of electrodes. Ion selective electrode – definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Reference electrode – Introduction, calomel electrode – construction, working and applications of calomel electrode. Concentration cell– Definition, construction and Numerical problems.

MODULE 4: Green Fuels and Polymers (8hr)

Green Fuels: Introduction, construction and working of solar photovoltaic cell, advantages, and disadvantages. Generation of energy (green hydrogen) by electrolysis of water and its advantages.

Polymers: Introduction, Molecular weight - Number average, weight average and numerical problems. Conducting polymers – synthesis and conducting mechanism of polyacetylene and commercial applications. Preparation, properties, and commercial applications of graphene oxide.

MODULE 5: Analytical Techniques and E-Waste Management (8hr)

Analytical Techniques: Introduction, principle and instrumentation of Conductometry; its application in the estimation of weak acid. Potentiometry; its application in the estimation of iron.

E-Waste: Introduction, sources of e-waste, Composition, Characteristics, and Need of ewaste management. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery: Different approaches of recycling (separation, thermal treatment)

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

- **CO1.** Identify the terms and processes involved in scientific and engineering Applications
- **CO2.** Explain the phenomena of chemistry to describe the methods of engineering processes
- **CO3.** Solve for the problems in chemistry that are pertinent in engineering applications
- **CO4.** Apply the basic concepts of chemistry to explain the chemical properties and processes
- **CO5.** Analyze properties and Processes associated with chemical substances in multidisciplinary situations

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (23 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum and total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

The CIE shall be conducted by the course teacher throughout the semester. The suggested

components of CIE for Theory course are The CIE marks for the theory component shall be 50 marks is as detailed below

Three Tests each of 15 Marks; (Third test is improvement test).

- CIE will be conducted by the university as per scheduled time table with question
- papers for the subject (duration of 1 hour 15 minutes)
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)
- Semester End Examination (SEE)
- 1. Theory SEE will be conducted by University as per the scheduled time table, with question papers for the subject (duration 03 hours)
- 2. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50 marks.
- 3. The question paper will have ten full questions carrying equal marks.
- 4. Each full question carries 20 marks.
- 5. There will be two full questions (with a maximum of three sub questions) from each module
- 6. Each full question will have sub questions covering all the topics under a module.
- 7. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)

- 1. Wiley Engineering Chemistry, Wiley India Pvt. Ltd. New Delhi, 2013- 2nd Edition.
- 2. Engineering Chemistry, Satyaprakash & Manisha Agrawal, Khanna Book Publishing, Delhi
- 3. A Text Book of Engg. Chemistry, Shashi Chawla, Dhanpat Rai & Co. (P) Ltd.
- 4. Essentials of Physical Chemistry, Bahl&Tuli, S.Chand Publishing
- 5. Applied Chemistry, Sunita Rattan, Kataria 5. Engineering Chemistry, Baskar, Wiley
- 6. Engineering Chemistry I, D. Grour Krishana, Vikas Publishing
- 7. A Text book of Engineering Chemistry, SS Dara & Dr. SS Umare, S Chand & Company Ltd., 12th Edition, 2011.
- 8. A Text Book of Engineering Chemistry, R.V. Gadag and Nityananda Shetty, I. K. International Publishing house. 2nd Edition, 2016.
- 9. Text Book of Polymer Science, F.W. Billmeyer, John Wiley & Sons, 4th Edition, 1999.
- 10. Nanotechnology A Chemical Approach to Nanomaterials, G.A. Ozin & A.C. Arsenault, RSC Publishing, 2005.
- 11. Corrosion Engineering, M. G. Fontana, N. D. Greene, McGraw Hill Publications, New York, 3rd Edition, 1996.
- 12. Linden's Handbook of Batteries, Kirby W. Beard, Fifth Edition, McGraw Hill, 2019.
- 13. OLED Display Fundamentals and Applications, Takatoshi Tsujimura, Wiley-Blackwell, 2012
- 14. Supercapacitors: Materials, Systems, and Applications, Max Lu, Francois Beguin, Elzbieta Frackowiak, Wiley-VCH; 1st edition, 2013.
- 15. "Handbook on Electroplating with Manufacture of Electrochemicals", ASIA PACIFIC BUSINESS PRESS Inc., 2017. Dr. H. Panda,
- 16. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Engineering Chemistry, Edited by Dr. Mahesh B and Dr. Roopashree B, Sunstar Publisher, Bengaluru, ISBN 978-93-85155-70-3, 2022
- 18. High Performance Metallic Materials for Cost Sensitive Applications, F. H. Froes, et al. John Wiley & Sons, 2010
- 19. Instrumental Methods of Analysis, Dr. K. R. Mahadik and Dr. L. Sathiyanarayanan, Nirali Prakashan, 2020
- 20. Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R. Crouch Seventh Edition, Cengage Learning, 2020
- 21. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev, Sreedhar, Newage Int. Publishers, 4th Edition, 2021
- 22. Engineering Chemistry, P C Jain & Monica Jain, Dhanpat Rai Publication, 2015-16th Edition.
- 23. Nanostructured materials and nanotechnology, Hari Singh, Nalwa, academic press, 1^{st} Edition, 2002.
- 24. Nanotechnology Principles and Practices, Sulabha K Kulkarni, Capital Publishing Company, 3rd Edition 2014
- 25. Principles of nanotechnology, Phanikumar, Scitech publications, 2nd Edition, 2010.
- 26. Chemistry for Engineering Students, B. S. Jai Prakash, R. Venugopal, Sivakumaraiah & Pushpa Iyengar., Subash Publications, 5th Edition, 2014
- 27. "Engineering Chemistry", O. G. Palanna, Tata McGraw Hill Education Pvt. Ltd. New Delhi, Fourth Reprint, 2015.

ffu

- 28. Chemistry of Engineering materials, Malini S, K S Anantha Raju, CBS publishers Pvt Ltd.,
- 29. Laboratory Manual Engg. Chemistry, Anupma Rajput, Dhanpat Rai & Co.

Web links and Video Lectures (e-Resources):

- http://libgen.rs/
- https://nptel.ac.in/downloads/122101001/ .
- https://nptel.ac.in/courses/104/103/104103019/ .
- https://ndl.iitkgp.ac.in/ .
- https://www.youtube.com/watch?v=faESCxAWR9k .
- https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb3X-• 9lbHrDMjHWWh
- https://www.youtube.com/watch?v=j5Hml6KN4TI
- https://www.youtube.com/watch?v=X9GHBdyYcyo .
- https://www.youtube.com/watch?v=1xWBPZnEJk8
- https://www.youtube.com/watch?v=wRAo-M8xBHM

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- <u>https://www.vlab.co.in/broad-area-chemical-sciences</u>
- https://demonstrations.wolfram.com/topics.php
- https://interestingengineering.com/science

COs and POs Mapping (Individual teacher has to fill up)

1			0050			0.						
						-	0	D 00	P09	P010	P011	P012
	P01	PO2	P03	P04	P05	P06	P07	P08	P09	1010		
C01	3	1	1				1					
CO2	3	1	1				1					
CO3	3	1	1				1					
C04	3	1	1				1					
C05	3	1	1				I					

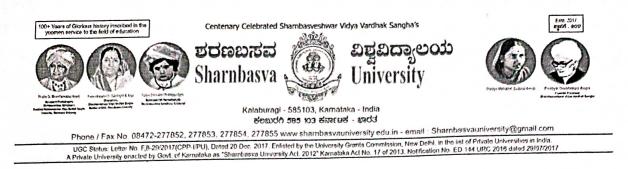
Fotol EPotol INI , PPY

Phone / Fax No. 094 (2-21/052, 21/053, 21/054, 21/053, 21/053, 2005) www.shatinosysedim/ensigledual - email: - anamoasyadim/early ggmant-com-UGC Status: Letter No. F.8-29/2017(CPP I/PU), Dated 20 Dec. 2017. Enfeled by the University Grants Commission, New Delhi, in the list of Private Universities in India. A Drease Interestive nancted by Gody et Karinataka as "Sharrbasva University Act. 2012" Karinataka Act No. 17 of 2013. Notification No. ED 144 URC 2016 dated 29/07/2017

Ref No:

Date: 08-11-2022

DEPARTMENT OF CHEMISTRY BOARD OF STUDIES(BOS) MEETING


Proceeding of BOS Department of Chemistry was held on 08.11.2022 at 11:00 am in the Department of Chemistry B.Tech (Co-ed) building, Sharnbasva University.

AGENDA OF THE MEETING

- 1. Approval of syllabus and Question paper pattern of B.Tech. Engineering Chemistry for CES, CSS, MES and EES Streams as per NEP-2020 scheme for the academic year 2022-23 and 2023-24
- 2. Approval of syllabus and Question paper pattern of B.Tech. Engineering Chemistry Lab is common for all CES, CSS, MES and EES Streams as per NEP-2020 scheme for the academic year 2022-23 and 2023-24

MINUTES OF THE MEETING

- Proceeding of the meeting of the board of studies in chemistry held on 8th Nov 2022 at 11:00 am to prepare the syllabus and Question paper pattern of B.Tech. Engineering Chemistry, Choice Based Credit System (CBCS), Outcome Based Education (OBE) and as per National Education Policy (NEP) for the academic year 2022-23 and 2023-24
- 2. The syllabus and Question paper pattern of B.Tech. Engineering Chemistry was drafted after several deliberation and discussion during the meeting of the board of studies, it was decided and prepared the syllabus as chemistry for Civil Engineering stream(CES), chemistry for Computer Science stream(CSS), chemistry for Mechanical Engineering stream(MES) and chemistry for Electrical and Electronics Engineering stream(EES).
- 3. For Engineering Chemistry Lab, it was decided by all the BOS members that, all experiments should be common to all Streams/Branches. All laboratory experiments are to be included for the practical exam. Practical SEE will be conducted by University as per the scheduled time table, for the subject (duration 02 hours). Students can perform one experiment from the questions lot prepared by the examiners

RESOLUTIONS

- 1. The BOS Members approved scheme, syllabus and Question paper pattern of B.Tech. Engineering Chemistry for CES, CSS, MES and EES Streams as per NEP-2020 scheme for the academic year 2022-23 and 2023-24.
- 2. The BOS Members approved scheme, syllabus and Question paper pattern of B.Tech. Engineering Chemistry Lab is common for all CES, CSS, MES and EES Streams as per NEP-2020 scheme for the academic year 2022-23 and 2023-24,

The Following Members were attended the meeting approved the Scheme, Syllabus and Pattern of Question paper.

SI. NO.	NAME OF THE FACULTY	DESIGNATION	SIGNATURE
1	Dr. Nirdosh Patil	Chairman	÷.
2	Dr. Parvati G	Member	Aques.
3	Dr. Shweta Patil	Member	Reality
4	Prof. Anita R H	Member	T ffy
5.	Prof. Sangeeta Aland	Member	Bland
6	Dr. R. S Malipatil	Member	129
7	Dr. Kashinath K	Member	(-j=
8	Dr. Shivakumar R	Member	12
9	Prof. Siddangouda Patil	Member	J.P.

CHAIRMAN

Sharnbasva University, Kalaburagi

Scheme for B.Tech., First	Year Program from the	e Academic	Year: 2022-23
			THE PERCH & COLORS

All the B. Tech., branches offered by the University are grouped in to Four Streams (CES, MES, EES and CSS)

				B.Tech. First	semeste	er							
	I	e Course Code	I			Teaching h	ours/week			Examina	ation		
SI.	COMPANY AND A		le Course Title	Teaching Department/	Theory/ Trataint	Practical/	Activiti	Duration	CIE	SEE	Total	Credits	
No.				Paper Setting Board	Lecture	Tutorial	Drawing	es	Duration	Marks	Marks	Marks	
		22MATC11	Mathematics for CES - I		3	}	2	0	3+2	50	50	100	4
		223 4 4 73 411	Mathematics for MES - I	Mathamatica	3	3	2	0	3+2	50	50	100	4
1	ASC (IC)	SC (IC) 22MATELL Mathematics for MCS - I 22MATELL Mathematics for EES - I	Mathematics	3	3	2	0	3+2	50	50	100	4	
		22MATS11	Mathematics for CSS - I		3	}	2	0	3+2	50	50	100	4

				B.Tech. Second	semester			1.1.1.1.1.1	1-1-1-1	A STA		
		22MATC21	Mathematics for CES - II		3	2	0	3+2	50	50	100	4
			Mathematics for MES - II		3	2	0	3+2	50	50	100	4
2	ASC (IC)	22MATE21	Mathematics for EES - II		3	2	0	3+2	50	50	100	4
		Westment in the second state of the second sta	Mathematics for CSS - II		3	2	0	3+2	50	50	100	4

CES	Civil Engineering Sream	CIVIL
MES	Mechanical Engineering Stream	MECH, ENERGY
EES	Electrical and Electronics Engineering Stream	EEE, ECE
CSS	Computer science Engineering Stream	CSE, AI&DS and AI&ML

STILZS Julitings Aslath CEINING

			Sharnba	sva Univer	sity, H	Kalab	uragi							
		Sche	eme for B.Tech., Second	l Year Progra	am fron	n the A	Academ	ic Yea	ar: 2022	2-23				
		All	the B.Tech., branches offered by th	e University are gro	ouped in to	Four Stre	eams (CES	, MES, E	ES and CS	SS)				
			B.Tech. Third an	nd Fourth seme	ester Lat	teral En	try stud	ents						
		1				Teaching h	nours/week			Examin	ation			
SL. No.	Course	Course Code	Course Code	Course Title	Teaching Department/ Paper Setting Board	Theory/	Tutorial	Practical/	Activiti	Duration	CIE	SEE		Credits
No.				raper setting board	Lecture	Tutoriai	Drawing	es	Duration	Marks	Marks	Marks		
		22MATDIP31	Additional Mathematics - I	Mathematics	2	2	0	0	2	50	0	100	0	
1		22MATDIP41	Additional Mathematics - II	Mathematics	2	2	0	0	2	50	0	100	0	

Alternes Wins and habit the state of the sta

Mathematics for Civil Engineering	g stream	
22MATC11	CIE Marks	50
Integrated	SEE Marks	50
	Total Marks	100
2:2:2:0	Exam Hours	03+02
40hoursTheory+10-12Lab slots	Credits	04
urse Advanced Calculus, Transform	s and Numerical	methods
roblems applying Partial derivatives ion by using indeterminate forms. olar curves to trace different types o rst degree differential equations.	s and understand of curves.	l the value
eachers can use to accelerate the att	ainment of the w	arious
active currate to accelerate the att	unificate of the v	arious
lecture method, different types of in elivered lessons shall develop stude	novative teachir nt's theoretical a	ng methods and applied
cs with Engineering Studies and Pro	vide real-life exa	amples.
its for self–study.		
or assigning homework and quizzes	, and documenti	ng
	ive and analytica	al skills.
	ost losture act	itu)
		ityJ.
some exercises (post-lecture activi	tyj.	the second second
vill be able to:		
differentiation to compute rate of cl	hange multivaria	te
differentiation to compute rate of cl the concept of Indeterminate forms.	hange multivaria	te
the concept of Indeterminate forms.		
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in p	nd the solenoidal ower series form	and
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in p	nd the solenoidal ower series form	and
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in po- lculus to solve problems related to p f different curves.	nd the solenoidal ower series form polar curves and	l and I.
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in p lculus to solve problems related to p f different curves. nlinear differential equation analytic	nd the solenoidal ower series form polar curves and	l and I.
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in p lculus to solve problems related to p f different curves. nlinear differential equation analytic olution in graphical form.	nd the solenoidal ower series form oolar curves and cally using standa	l and a.
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in po- culus to solve problems related to p f different curves. Inlinear differential equation analytic olution in graphical form. for solving for system of linear equa	nd the solenoidal ower series form oolar curves and cally using standa	l and a.
the concept of Indeterminate forms. of multivariate calculus to understan ow the expansions of functions in p lculus to solve problems related to p f different curves. nlinear differential equation analytic olution in graphical form.	nd the solenoidal ower series form oolar curves and cally using stand tions and compu	l and a.
	40hoursTheory+10-12Lab slots urse Advanced Calculus, Transform of series expansion and Vector calcu- roblems applying Partial derivatives ion by using indeterminate forms. olar curves to trace different types of rst degree differential equations. of matrices and linear algebra in a co- eachers can use to accelerate the att lecture method, different types of in- elivered lessons shall develop stude cs with Engineering Studies and Pro- tis for self-study. for assigning homework and quizzes each module. roup learning to improve their creat ures in the following ways: new topics (pre-lecture activity). c (post-lecture activity). es (post-lecture activity). rial of challenging topics (pre-and p	40hoursTheory+10-12Lab slots Credits urse Advanced Calculus, Transforms and Numerical of series expansion and Vector calculus essential for roblems applying Partial derivatives and understand ion by using indeterminate forms. olar curves to trace different types of curves. rst degree differential equations. of matrices and linear algebra in a comprehensive matrices eachers can use to accelerate the attainment of the v lecture method, different types of innovative teaching elivered lessons shall develop student's theoretical a cs with Engineering Studies and Provide real-life exacters tas for self-study. for assigning homework and quizzes, and documention each module. roup learning to improve their creative and analytica ures in the following ways: new topics (pre-lecture activity). i (post-lecture activity).

Page 1 of 5

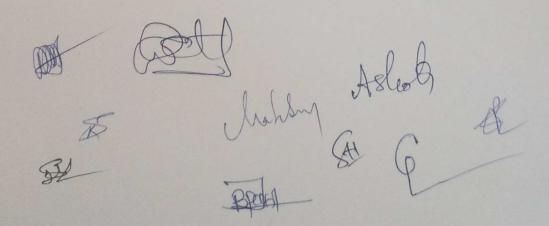
05

	CO# Remember Understand Apply Analyze					a secondo a									
-	(L1) CO1 √		r U	UnderstandApply(L2)(L3) $$ $$			1	Analyze (L4)		Evaluate (L5)		Create (L6)			
morrenter									<u> </u>		100	·	- les	יי	
CC	- martine	V		\checkmark		V									
harmonia	And and the second s					V									
-			V					\checkmark							
CC	15		<u></u>					\checkmark							
Cours	e Arti	iculati	ion Ma	atrix ,	/ Cour	se ma	ppinį	g :							
CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2		1				1			1			-
CO2	3	2	2		1				1			1			
CO3 CO4	3	2	2		1				1			1			
C05		2	2		1				1			1			
Note:				Medin	Im mai	nnod i			1			1			
artial di roblems	fferen . Max	itiation ima an	n, total	deriv	forms 's rule. vative -	and P Proble different	Partia ems. entiat	l diffe ion of	compo	ation i	r elati unctio		C ivil E obian	E ngin and	
artial di roblems elf stud ingle con pplicat oints an RBT Lev	fferen . Max y: Eul hstrai ions: d extrai rels: L	itiatior ima an er's th nt. Compu- reme v <u>1, L2 a</u>	utatior alues. .nd L3)	deriv ima fo and p of st L E-2 :	forms 's rule. vative - or a fur proble ress ar SERIE	and P Proble different ms. Me nd strat	Partia ems. entiat of two ethod in, Err	l diffe ion of varia of Lag cors ar	compo bles. F range' nd app	ation n posite fr Problem s under roxim	relation	ing to (ons. Jac uined m s, Estin	Civil E cobian ultipl nating	Engin and iers v g the c (8	vith critic <u>Hou</u>
artial di roblems elf stud ngle con pplicat oints an RBT Lev ntroduc aylor's a 'ector D	fferen . Max y: Eul nstrai ions: d extr els: L ction t and M ifferen	itiatior ima an er's th nt. Compu- reme v 1, L2 a N to Seri faclaur	n, total ad min eorem utatior alues. nd L3) AODUI ies exp 'in's se n: Scal	deriv ima foi and p of str LE-2 : pansio ries e ar and	forms 's rule. vative - or a fur proble: ress ar SERIE on and xpansi d vecto	s and P Proble difference nction of ms. Me nd strain S EXP, I Vector ons for or fields	ems. entiat of two thod in, Err ANSIC or Cal	l diffe ion of o varia of Lag cors ar <u>ON AN</u> culus variab	compo bles. F range' nd app <u>ND VE(</u> in Civ le (sta directi	ation i osite fi Problem s under roxim <u>CTOR</u> il Eng temen	relations. etermation ation <u>CALC</u> ineer	ing to (ons. Jac tined m s, Estin <u>CULUS</u> ring ap ly)- Pro	Civil E cobian ultipl nating plicat	Engin and iers w g the c (8 tions. s	vith critic <u>Hou</u>
artial di roblems elf stud ingle con pplicat oints an	fferen . Max y: Eul hstrai ions: id extr els: L ction t and M ifferen l inter ly: Vel	itiatior ima an er's th nt. Compu- reme v <u>1, L2 a</u> <u>N</u> to Seri- laclaur ntiatio rpretat	n, total ad min eorem utatior alues. nd L3) 10DUI ies exp rin's se n: Scal tion, sc and acc	deriv ima fo and j n of str LE-2 : pansio ries e ar ano olenoi celera	forms 's rule. vative - or a fur proble ress ar SERIE on and xpansi d vecto dal and tion of	s and P Proble difference internation of ms. Me and strain S EXP I Vector ons for or fields d irrota	ems. entiat of two of t	l diffe ion of o varia of Lag cors ar cors ar DN AN culus variab dient, l vecto	compo bles. F range' nd app ND VEG in Civ le (sta direction field	ation i osite fi Problem s unde roxim CTOR il Eng temen onal d ls. Prob	relations. etermation ation <u>CALC</u> ineer its on eriva blems	ing to (ons. Jac tined m s, Estin CULUS ring ap ly)- Pro tive, di s.	Civil E cobian aultipl nating plicat oblem	Engin and iers w the c (8 tions s nce an	vith critic <u>Hou</u>
artial di roblems elf stud ingle con pplicat oints an <u>RBT Lev</u> ntroduc 'aylor's a 'ector D physica Self-Stud	fferen . Max y: Eul hstrai ions: d extr rels: L ction t and M ifferen l inten ly: Vel ions: I	titatior ima an er's th nt. Compu- reme v <u>1, L2 a</u> <u>M</u> to Seri faclaur ntiatio rpretat ocity a Heat ar	n, total ad min eorem values. nd L3) 10DUI ies exp rin's se n: Scal tion, so and acco	deriv ima fo and p n of str LE-2 : pansio ries e ar and plenoi celera	forms 's rule. vative - or a fur proble ress ar SERIE on and xpansi d vecto dal and tion of asfer, o	s and P Proble different nction of ms. Me ad strate ad strate S EXP, I Vector ons for or fields d irrota a mov il refin	Partia ems. entiat of two ethod a in, Err ANSIC or Cal r one of s. Grad ationa ing pa ery pr	l diffe ion of o varia of Lag cors ar DN AN culus variab dient, d l vecto article.	compo bles. F range' nd app ND VE in Civ le (sta directi or field ns, env	ation i posite fr Probler s unde roxim CTOR il Eng temen onal d ls. Prob	relati unctions. eterm ation CALC ineer ts on eriva blems	ing to (ons. Jac tined m s, Estin CULUS ring ap ly)- Pro tive, di s.	Civil E cobian aultipl nating plicat oblem	Engin and iers w the c (8 tions s nce an	vith rrition Hou
artial di roblems elf stud ingle con pplicat oints an RBT Lev ntroduc 'aylor's a Vector D physica Self-Stud Applicat	fferen . Max y: Eul hstrai ions: d extr rels: L ction t and M ifferen l inten ly: Vel ions: I	titatior ima an er's th nt. Compu- reme v <u>1, L2 a</u> <u>M</u> to Seri faclaur ntiatio rpretat ocity a Heat ar	n, total ad min eorem values. nd L3) 10DUI ies exp rin's se n: Scal tion, so and acco	deriv ima fo and p n of str LE-2 : pansio ries e ar and plenoi celera	forms 's rule. vative - or a fur proble ress ar SERIE on and xpansi d vecto dal and tion of asfer, o	s and P Proble difference internation of ms. Me and strain S EXP I Vector ons for or fields d irrota	Partia ems. entiat of two ethod a in, Err ANSIC or Cal r one s. Grad ationa ing pa ery pr	l diffe ion of o varia of Lag cors ar DN AN culus variab dient, d l vecto article.	compo bles. F range' nd app ND VE in Civ le (sta directi or field ns, env	ation i posite fr Probler s unde roxim CTOR il Eng temen onal d ls. Prob	relati unctions. eterm ation CALC ineer ts on eriva blems	ing to (ons. Jac tined m s, Estin CULUS ring ap ly)- Pro tive, di s.	Civil E cobian aultipl nating plicat oblem	Engin and iers w the c (8 tions s nce an	vith critic <u>Hou</u>

atrodi	uction to	polar coordinates and curvature in Civil Engineering applications.
urves.	oordinate Pedal eq Problems	s, Polar curves, angle between the radius vector and tangent, angle between two uations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal
Applic	cations: /	ter and circle of curvature, evolutes, involutes and envelopes. Angle of elevation and survey engineering. , L2 and L3) (8 Hours
MC	ODULE- 4	(8 Hours LINEAR AND NON-LINEAR ORDINARY DIFFERENTIAL EQUATION OF FIRST ORDER
ntrod	luction to	o first order ordinary differential equations pertaining to the applications for
		rible to exact differential equations -Integrating factors type-1.
Applic Proble	cations of	ODE's – Orthogonal trajectories, Conduction of heat, Newton's law of cooling.
Self-S	tudy: App	blications of ODE's, Solvable for x ,y and p.
		f ordinary differential equations: Rate of Decay and growth. (8 Hours)
		MODULE- 5: LINEAR ALGEBRA of liner algebra related to Civil Engineering applications.
elimi Appli	nation me ications of	ution of a system of linear equations by Gauss-Jacobi iterative method, Gauss- ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution.
elimi Appli (RBT List o	nation me ications of Levels: L of Labora	thod. Inverse of a square matrix by Cayley-Hamilton theorem.
elimi Appli (RBT List o	nation me ications of Levels: L of Labora ab session	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment
elimi Appli (RBT List o	nation me ications of Levels: L of Labora ab session	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity
elimi Appli (RBT List o	ination me ications of Levels: L of Labora ab session 1 2	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent
elimi Appli (RBT List o	ination me ications of Levels: L of Labora ab session 1 2 3	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tos + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits
elimi Appli (RBT List (ination me ications of Levels: L of Labora ab session 1 2	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent
elimi Appli (RBT List (ination me ications of Levels: L of Labora ab session 1 2 3	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function
elimi Appli (RBT List (ination me ications of Levels: L of Labora ab session 1 2 3 4 5	thod. Inverse of a square matrix by Cayley-Hamilton theorem. (Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) as + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves
elimi Appli (RBT List (ination me ications of Levels: L of Labora ab session 1 2 3 4 5 6	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding of intersection between two polar curves
elimi Appli (RBT List (ination me ications of Levels: L of Labora ab session 1 2 3 4 5 6 7	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent
elimi Appli (RBT List o	ination me ications of Levels: L of Labora ab session 1 2 3 4 5 6 7 8	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves
elimi Appli (RBT List o	ination me ications of <u>Levels: L</u> of Labora ab session 1 2 3 4 5 6 7 8 9	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves Finding the pedal equation of the polar curves Finding radius of curvature of a given curve
elimi Appli (RBT List o	ination me ications of Levels: L of Labora ab session 1 2 3 4 5 6 7 8	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves Finding radius of curvature of a given curve Solution of first order differential equation and plotting the graphs
elimi Appli (RBT List o	ination me ications of Levels: L of Labora ab session 1 2 3 4 5 6 7 8 9 10	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves Finding the pedal equation of the polar curves Finding radius of curvature of a given curve
elimi Appli (RBT List o	Ination meications ofLevels: Lof Laboraab session1234567891011	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. f Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) tors + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves Finding radius of curvature of a given curve Solution of first order differential equation and plotting the graphs
elimi Appli (RBT List o	Ination meications ofLevels: Lof Laboraab session1234567891011	ethod. Inverse of a square matrix by Cayley-Hamilton theorem. (Linear Algebra: Optimum solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) as + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the pedal equation of the polar curves Finding radius of curvature of a given curve Solution of first order differential equation and plotting the graphs Program to compute area, volume and centre of gravity Solving the Linear differential equations

warren bez	personal sector de la completa de la	
	13	Evaluating the rank of matrix
	14	Numerical solution of system linear equations , test for consistency .
Sug	gested so	Rware's : Mathematica/MatLab/Python/Scilab
		Details (both CIE and SEE)
E	Th Exam (SEE	e weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End 5) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18
0 5 5	A stredits allo (60) in the	student shall be deemed to have satisfied the academic requirements and earned the otted to each subject/ course if the student secures not less than 35% (18 Marks out of semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken
Con	tinuous l	internal Evaluation(CIE):
ן t	The CIE sh heory con The CIE ma	hall be conducted by the course teacher throughout the semester. The CIE marks for the nponent of the IC shall be 30 marks and for the laboratory component 20 Marks. arks for the theory component shall be 50 marks and scored will be reduced as below
1		ts each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90- pectively. Average of Best Two performances of the Internal Tests shall be considered iks.
		se assignments for 25 marks
		ar and library work 05 marks
• A	Attendanc	e 5 marks (95% to 100%), 04 marks (85% to 94%)
• (a a	On comple and marks and prepa	ractical component of the IC: etion of every experiment/program in the laboratory, the students shall be evaluated shall be awarded on the same day. The 35 marks are for conducting the experiment ration of the laboratory record, the other 15 marks shall be for the test conducted at the semester.
е	valuation	arks awarded in the case of the Practical component shall be based on the continuous of the laboratory report. Each experiment report can be evaluated for 50 marks. Il experiments' write-ups are added and scaled down to 20 marks.
1. T r	he SEE קו educed to	Examination(SEE) uestion paper will be set for 100 marks and the marks scored will be proportionately 50. ton paper will have ten full questions carrying equal marks.
		uestion carries 20 marks.
		be two full questions (with a maximum of three sub questions) from each module
5. I	Each full q	uestion will have sub questions covering all the topics under a module.
6. 1	'he studer	ts will have to answer five full questions, selecting one full question from each module.
		Page 4 of 5
	-	
R	- A	Vun AL C
		odel Still A
		FILIP

Sel To


Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- 1. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. N.PBali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. C.Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New york, 6thEd., 2017.
- 5. **C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India) Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

Page 5 of 5

Course Title:	Mathematics for Mechanical Engineering Stream					
Course Code:	22MATM11	CIE Marks	50			
Course Type(Theory/Practical/Integrated)	Integrated	SEE Marks	50			
		Total Marks	100			
Teaching Hours/Week (L:T:P:S)	2:2:2:0	Exam Hours	03+02			
Total Hours of Pedagogy	40hoursTheory+10- 12Lab slots	Credits	04			

Course objectives: The goal of the course Advanced Calculus, Transforms and Numerical methods (22MATM11) is to

- Familiarize the importance of series expansion and Vector calculus essential for Mechanical engineering.
- Analyze Mechanical engineering problems applying Partial Derivatives and understand the value of limit (continuity) of function by using indeterminate forms.
- Develop the knowledge of polar curves to trace different types of curves.
- Applications of first order first degree differential equations.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

Teaching-Learning Process

Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework and quizzes, and documenting students' progress.
- 5. Five assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

C01	Learn the notion of partial differentiation to compute rate of change multivariate functions and understand the concept of Indeterminate forms.
CO2	Illustrate the applications of multivariate calculus to understand the solenoidal and irrotational vectors and know the expansions of functions in power series form.
CO3	Apply the knowledge of calculus to solve problems related to polar curves and graphical representation of different curves.
CO4	Solve first order linear/nonlinear differential equation analytically using standard methods and express the solution in graphical form.
CO5	Make use of matrix theory for solving for system of linear equations and

Page 1 of 5

	C06		earn w ATHEI			n mathe	matic	al tool	ls nam	iely S	CILAB	/PY	THON ,	/MATI	LAB /	
100	om's lo	evel	of the	cours	e oul	tcomes	11									
1		T	appart Windows Summer	marin Capita 200	de televisión de la composición de la c	and the second second second		Blo	om's	Leve			tingi atina parine an	and the second		procession of the second
	со	#		embe L1)	r 1	Unders (L2		A	pply (L3)	ALL INCOMENTS	Analyz (L4)	e	Evalu (L5	100 C	Crea (L6	
	СО	1	an land an	V		V		-	V		San Manager San		and a second		Carpone Reason	Accession of the second
	CO	2		J	and the second	J			J	Contraction of the local distance						
	CO	Contraction and and	araa felancar eekoonteeroo	J		J	prosina positivana con	a desire sisseriali	1	- and the second					Au	
	co			V J		v v		-	V				East and an and a second			
	CO	man and		V J	and the second	v	procession and the second		V				an ana ang ang ang ang ang ang ang ang a			
ou	Lauren and a sub-	Annone and	lation	Matri	x/C	ourse	mappi	ing:	<u>v</u>					l		
Г		1	2	6		10		F	6	6	0	-	10	-	2	6
	CO#	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PS02	PS03
1	CO1	3	2	2		1				1			1			
-	CO2	3	2	2		1				1			1			
T	CO3	3	2	2		1				1			1			
	CO4	3	2	2		1				1			1			
	CO5	3	2	2		1		142		1			1			
lot	e: 1-Lo					n mappe							Mr. L.			
nd Par oro	gineer eterm tial dif blems	ing. inate fferer . Max	forms ntiation ima ar	etern - L'Ho n, tota nd min	spita deri ima	e form al's rule ivative for a fu	e. Probl - differ nction	Partia lems. entiat of two	al diff tion of o varia	f com	tiation posite f	functions.	ating t	o Mec	hanic	
nde Par oro Self sing Apj pro	gineer eterm tial dif blems f study gle cor plicationess, I	ing. inate fferer . Max y: Eul nstrai ions: Estim	forms ntiation tima ar ler's th nt. Compu- ating t	etern - L'Ho n, tota nd min neoren utatio he crit	spita deri ima n and n of s tical	e form al's rule ivative	s and - Probl - differ nction ems. Ma	Partia ems. entiat of two ethod ain, Er	al diff tion of o varia of Laş rors a	f com ables grang nd ap	tiation posite f Proble e's und pproxin	func ems. eter	ating to tions. Ja rmined	o Mec acobia multij	hanic in and pliers acturi	l with a ng
Self sing pro (RE	gineer eterm tial dif blems f stud gle cor plicati ocess, I 3T Lev	ing. inate fferer . Max y: Eul strai ons: Estim els: L	forms ntiation ima ar ler's th nt. Comp ating t 1, L2 a M	etern - L'Ho n, tota nd min neoren utatio he cri nd L3 10DU	ninat spita deri ima n and n of s tical j) L E-2	e form al's rule ivative for a fu proble stress a points a : SERIH	s and . Probl - differ nction ems. Mo and stra and ext 25 EXP	Partia ems. entiat of two ethod ain, Er treme	al diff tion of o varia of Lag rors a value ON Al	f com ables grang and ap s, vec	tiation posite f Proble e's und pproxin tor cale	func ems. eter natio	ating to tions. Ja rmined ons in n s. LCULU	o Mec acobia multij nanufa	hanic in and pliers acturi ({	l with a
Self Self Sing App pro (RB Int Tay Vec	gineer eterm tial dif blems f study gle cor plicati cess, I 3T Lev roduc plicati ylor's a	ing. inate fferer . Max y: Eul istrai ions: Estim els: L tion ions. and M	forms ntiation ima ar ler's th nt. Comp ating t 1, L2 a N to Ser laclaur ntiatio	etern - L'Ho n, tota id min ecoren utatio he crit nd L3 10DU ies ex rin's so n: Sca	spita ospita deri ima n and n of s tical) LE-2 pans eries lar ar	e form al's rule ivative for a fu proble stress a points a	s and . Probl - differ nction ems. Mo and stra and ext 2S EXP d Vect ions for or field	Partia lems. rentiat of two ethod ain, Er treme ANSI cor Ca or one ls. Gra	al diff tion of o varia of Lag rors a value ON Al Iculus varial	f com ables grang and ap s, vec ND V s in M ble (s	tiation posite f Proble e's und pproxin ttor cale ECTOR lechan tateme	rel func ems. eeter natio culu CA ical nts deri	ating to stions. Ja rmined ons in m s. LCULU: Engine only)- F	o Mec acobia multij nanufa Seering Proble diverg	hanic in and pliers acturi ({ g ms	with a ng 3 Hours
Self sing App pro (RB Intr app Tay Vec - ph Sel App of s	gineer eterm tial dif blems f study gle cor plicati cess, I 3T Lev roduc plicati /lor's a ctor Di hysica f-Stud plicat	ing. inate fferer . Max y: Eul istrai ions: Estim els: L tion ffere: l inte l inte ly: Vo ions:	forms ntiation ima ar ler's th nt. Compu- ating t <u>1, L2 a</u> M to Ser laclaur ntiatio rpretat blume i Heat a s, veloo	etern - L'Ho n, tota nd min neoren utation he crin he crin nd L3 10DU ies ex rin's so n: Sca tion, S integra and ma city an	spita ospita deri ima n and n of s tical j LE-2 pans eries lar ar olence al and ass tr d acc	e form al's rule ivative for a fu l proble stress a points a : SERIH sion an expans	s and . Probl - differ nction ems. Ma ems. Ma nd stra and ext and ext ES EXP d Vect ions for or field ad rrot; s diverg oil ref	Partia lems. centiat of two ethod ain, Er treme ANSIG or Ca br one ls. Gra ationa gence inery	al diff tion of o varia of Lag rors a value ON Al Iculus varial dient, al vect theor probl	f com ables grang and ap s, vec ND V s in N ble (s , direc or fie em. ems,	tiation posite f Proble e's und pproxim tor cale ECTOR Iechan tateme ctional lds and enviror	rel func ems. eter natio culu CA ical nts deri	ating to stions. Ja rmined ons in m s. LCULUS Engine only)- F ivative, oblems.	o Mec acobia multij nanufa Seering Proble diverg	hanic in and pliers acturi (8 ms gence ing. A	with a ng <u>3 Hours</u> and cu nalysis
Inde Paris pro Self sing App pro (RE Intr app Tay Vec - ph Sel Sel Sel Sel Sel Sel Sel Sel Sel Sel	gineer eterm tial dif blems f study gle cor plicati cess, I 3T Lev roduc plicati /lor's a ctor Di hysica f-Stud plicat	ing. inate fferer . Max y: Eul istrai ions: Estim els: L tion ffere: l inte l inte ly: Vo ions:	forms ntiation ima ar ler's th nt. Computing t <u>1, L2 a</u> <u>M</u> to Ser laclaun ntiatio rpretat	etern - L'Ho n, tota nd min neoren utation he crin he crin nd L3 10DU ies ex rin's so n: Sca tion, S integra and ma city an	spita ospita deri ima n and n of s tical j LE-2 pans eries lar ar olence al and ass tr d acc	e form al's rule ivative for a fu l proble stress a points a : SERIH sion an expans ad vecto oidal an d Gauss ransfer,	s and . Probl - differ nction ems. Ma ems. Ma nd stra and ext and ext ES EXP d Vect ions for or field ad rrot; s diverg oil ref	Partia lems. centiat of two ethod ain, Er treme ANSIG or Ca br one ls. Gra ationa gence inery	al diff tion of o varia of Lag rors a value ON Al Iculus varial dient, al vect theor probl	f com ables grang and ap s, vec ND V s in N ble (s , direc or fie em. ems,	tiation posite f Proble e's und pproxim tor cale ECTOR Iechan tateme ctional lds and enviror	rel func ems. eter natio culu CA ical nts deri	ating to stions. Ja rmined ons in m s. LCULUS Engine only)- F ivative, oblems.	o Mec acobia multij nanufa Seering Proble diverg	hanic in and pliers acturi (8 ms gence ing. A	with a ng <u>3 Hours</u> and cu
Inde Paris pro Self sing App pro (RE Intr app Tay Vec - ph Sel Sel Sel Sel Sel Sel Sel Sel Sel Sel	gineer eterm tial dif blems f study gle cor plicati cess, I 3T Lev roduc plicati /lor's a ctor Di hysica f-Stud plicat	ing. inate fferer . Max y: Eul istrai ions: Estim els: L tion ffere: l inte l inte ly: Vo ions:	forms ntiation ima ar ler's th nt. Compu- ating t <u>1, L2 a</u> M to Ser laclaur ntiatio rpretat olume i Heat a s, veloo	etern - L'Ho n, tota nd min neoren utation he crin he crin nd L3 10DU ies ex rin's so n: Sca tion, S integra and ma city an	spita ospita deri ima n and n of s tical j LE-2 pans eries lar ar olence al and ass tr d acc	e form al's rule ivative for a fu l proble stress a points a : SERIH : SERIH : Output oidal an d Gauss cansfer, celeratio	s and . Probl - differ nction ems. Ma ems. Ma nd stra and ext and ext CS EXP d Vect ions for or field ad rrot; s diverg oil ref	Partia lems. centiat of two ethod ain, Er treme ANSIG or Ca br one ls. Gra ationa gence inery	al diff tion of o varia of Lag rors a value ON Al Iculus varial dient, al vect theor probl	f com ables grang and ap s, vec ND V s in N ble (s , direc or fie em. ems,	tiation posite f Proble e's und pproxim tor cale ECTOR Iechan tateme ctional lds and enviror	rel func ems. eter natio culu CA ical nts deri	ating to stions. Ja rmined ons in m s. LCULUS Engine only)- F ivative, oblems.	o Mec acobia multij nanufa Seering Proble diverg	hanic in and pliers acturi (8 ms gence ing. A	with a ng <u>3 Hours</u> and cu nalysis

And and a state of the state of	MODULE-3: DIFFERENTIAL CALCULUS							
Introduction	of series expansion and partial differentiation in Mechanical Enginee	ring						
applications.								
Polar coordin	ates, Polar curves, angle between the radius vector and tangent, angle betw	reen two						
	equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar	anu reu						
forms, only pr	roblems.							
Self-study: C	elf-study: Center and circle of curvature, evolutes, involutes and envelopes.							
Applications	: Computer graphics, Image processing.							
(RBT Levels:)	L1, L2 and L3)	(8 Hour						
MODULE-	4: LINEAR AND NON-LINEAR ORDINARY DIFFERENTIAL EQUATION O	F FIRST						
	ORDER							
	to first order ordinary differential equations pertaining to the applica	ations for						
Mechanical H	Engineering.	raducible						
Exact and red	ucible to exact differential equations -Integrating factors type-1, linear and	of cooling						
	ations of ODE's – Orthogonal trajectories, Conduction of heat, Newton's law	or cooning						
Problems.								
Self-Study: A	pplications of ODE's, Solvable for x, y and p. Clairaut's form.							
Applications	Rate of Decay and growth and applications to Mechanical Engineering.							
	L1 L2 and L3)	(8 Hours						
(RBT Levels:								
	MODULE- 5: LINEAR ALGEBRA							
Introduction	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications.							
Introduction Elementary re	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o							
Introduction Elementary re of linear equa	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by	f a systen						
Introduction Elementary ro of linear equa Gauss-Seidel	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th	f a systen						
Introduction Elementary re of linear equa Gauss-Seidel	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by	f a system						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution or ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector.	f a system						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Ga	f a system						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gau hethod. Inverse of a square matrix by Cayley-Hamilton theorem.	f a system ie uss-						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. at Network Analysis, Markov Analysis, Critical point of a network system. Op	f a system ie uss-						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m Applications	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution or ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. at Network Analysis, Markov Analysis, Critical point of a network system. Op solution.	f a systen le uss- ptimum						
Introduction Elementary ro of linear equa Gauss-Seidel dominant Eig Self-Study: So elimination m Applications (RBT Levels:	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. at Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3)	f a systen le uss- ptimum						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. a: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15)	f a systen le uss- ptimum						
Introduction Elementary re of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. at Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3)	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel dominant Eig Self-Study: So elimination m Applications (RBT Levels: List of Labor 10 lab sessio	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gause hethod. Inverse of a square matrix by Cayley-Hamilton theorem. : Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gaust thethod. Inverse of a square matrix by Cayley-Hamilton theorem. a: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity	f a system ie uss-						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab sessio	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gaust-bathod. Inverse of a square matrix by Cayley-Hamilton theorem. a: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem. s: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session	MODULE- 5: LINEAR ALGEBRAof linear algebra related to Mechanical Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and solution oations - Gauss-Jordan method and approximate solution bymethod. Eigen values and Eigen vectors, Rayleigh's power method to find then value and Eigen vectors, Rayleigh's power method to find then value and Eigen vector.olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem.c: Network Analysis, Markov Analysis, Critical point of a network system. Op solution.L1, L2 and L3)atory experiments (2 hours/week per batch/ batch strength 15)ms + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the limitsFinding the limitsFinding the limits	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session	MODULE- 5: LINEAR ALGEBRA a of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem. s: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits	f a systen le uss- ptimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session 10 lab session 4 5	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem. c: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph	f a systen le uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session 10 lab session 12 3 4	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the envalue and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gathethod. Inverse of a square matrix by Cayley-Hamilton theorem. a: Network Analysis, Markov Analysis, Critical point of a network system. Opsolution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the finits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables	f a systen le uss- ptimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session 11 2 3 4 5	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution of ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find the envalue and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem. :: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the privatives of a given function Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves	f a systen le uss- ptimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session 10 lab session 4 5 6	MODULE- 5: LINEAR ALGEBRA of linear algebra related to Mechanical Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and solution o ations - Gauss-Jordan method and approximate solution by method. Eigen values and Eigen vectors, Rayleigh's power method to find th en value and Eigen vector. olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem. s: Network Analysis, Markov Analysis, Critical point of a network system. Op solution. L1, L2 and L3) atory experiments (2 hours/week per batch/ batch strength 15) ons + 1 repetition class + 1 Lab Assessment Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding of intersection between two polar curves	f a system ne uss- otimum						
Introduction Elementary ro of linear equa Gauss-Seidel i dominant Eig Self-Study: Se elimination m Applications (RBT Levels: List of Labor 10 lab session 10	MODULE- 5: LINEAR ALGEBRAof linear algebra related to Mechanical Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and solution oations - Gauss-Jordan method and approximate solution bymethod. Eigen values and Eigen vectors, Rayleigh's power method to find then value and Eigen vectors, Rayleigh's power method to find then value and Eigen vector.olution of a system of linear equations by Gauss-Jacobi iterative method, Gamethod. Inverse of a square matrix by Cayley-Hamilton theorem.si Network Analysis, Markov Analysis, Critical point of a network system. Op solution.L1, L2 and L3)atory experiments (2 hours/week per batch/ batch strength 15)ons + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the given series convergent and divergentEvaluating the limitsFinding the Partial derivatives of a given functionFinding partial derivatives of a given functionFinding partial derivatives, Jacobian and plotting the graphApplications to Maxima and Minima of two variables2D plots for Cartesian and polar curvesFinding the angle between the radius vector and the tangent	f a systen le uss- ptimum						

11	Program to compute area, volume and centre of gravity
12	Solving the Linear differential equations
13	Evaluating the rank of matrix
14	Numerical solution of system linear equations , test for consistency .

Suggested software's : Mathematica/MatLab/Python/Scilab

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

<u>Continuous Internal Evaluation(CIE)</u>:

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks. The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below

- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

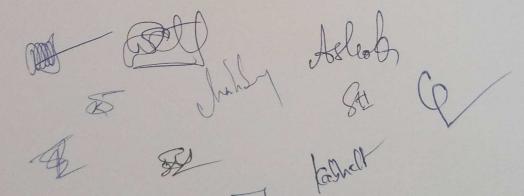
<u>CIE for the practical component of the IC:</u>

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Page 4 of 5


Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- I. B.S.Grewal:"Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. **N.PBali and Manish Goyal:** "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- C.Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New york, 6th Ed., 2017.
- C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

Page 5 of 5

Course Title:	Mathematics for Electrical and Electronics Engineering					
Course Code:	22MATE11	CIE Marks	50			
Course	Integrated	SEE Marks	50			
Type(Theory/Practical/Integrated)		Total Marks	100			
Teaching Hours/Week (L:T:P:S)	2:2:2:0	Exam Hours	03+02			
Total Hours of Pedagogy	40hoursTheory+10-12Lab slots	Credits	04			

Course objectives: The goal of this course (22MATE11)

- Familiarize the importance of series expansion and Vector calculus and Linear Algebra essential for electrical and electronics engineering.
- Analyze electrical and electronics engineering problems applying Partial derivatives and understand the value of limit (continuity) of function by using indeterminate forms.
- Develop the knowledge of polar curves to trace different types of curves.
- Applications of first order first degree differential equations.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

Teaching-Learning Process

Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework and quizzes, and documenting students' progress.
- 5. Five assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show related short video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

CO1	Express the different types of functions in power series form.
CO2	Learn the notion of partial differentiation to compute rate of change multivariate functions and understand the concept of Indeterminate forms
CO3	Apply the knowledge of calculus to solve problems related to polar curves and graphical representation of different curves.
CO4	Solve first order linear/nonlinear differential equation analytically using standard methods and express the solution in graphical form.
CO5	Make use of matrix theory for solving for system of linear equations and compute Eigen values and Eigen vectors by using computational softwares.
CO6	Learn with modern mathematical tools namely SCILAB / PYTHON / MATLAB /

Aslot &

Page 1 of 5

Bloom's level of the course outcomes:

			Bloom's Le	evel		
CO#	Remember (L1)	Understand (L2)	Apply (L3)	Analyze (L4)	Evaluate (L5)	Create (L6)
CO1		\checkmark	V			
CO2		\checkmark	V			
CO3	\checkmark	\checkmark	V			
CO4	\checkmark	\checkmark	V			
CO5		V	V			

Course Articulation Matrix / Course mapping :

CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
CO1	3	2	2		1				1			1			
CO2	3	2	2		1				1			1			
CO3	3	2	2		1				1			1			
CO4	3	2	2		1				1			1			
CO5	3	2	2		1				1			1			

Note: 1-Low mapped, 2-Medium mapped, 3-High mapped

MODULE-1 SEQUENCE AND SERIES

Introduction of Sequence and series in EE & EC Engineering Infinite series, tests for convergence/divergence, Limit comparison test, Ratio test, root test, Raabe's test, Alternating series, Absolute convergence and conditional convergence.

Self-study: Gauss's test, Cauchy integral test.

Applications: Sequence and Series expansion in communication signals.

(RBT Levels: L1, L2 and L3)

(8 Hours)

MODULE-2: INDETERMINATE FORMS AND PARTIAL DIFFERENTIATION

Introduction of Indeterminate forms and partial differentiation in EE & EC Engineering applications. Indeterminate forms - L'Hospital's rule. Problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian and

problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

poshed Aslot

Applications: Applications of maxima and minima in EE & EC Engineering.

(RBT Levels: L1, L2 and L3)

(8 Hours)

Page 2 of 5

DEPARTMENT OF MATHEMATICS, FACULTY OF ENGG. &TECH., SHARNBASVA UNIVERSITY, KALABURAGI **MODULE-3 : DIFFERENTIAL CALCULUS** Introduction to polar coordinates and curvature relating to EE & EC Engineering applications. Polar coordinates, Polar curves, angle between the radius vector and tangent, angle between two curves. Pedal equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Pedal forms. Problems only. Self-study: Center and circle of curvature, evolutes, involutes and envelopes Applications: Communication signals, manufacturing of microphones and Image processing, (8 Hours) (RBT Levels: L1, L2 and L3) **MODULE- 4: LINEAR AND NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF FIRST** ORDER Introduction to first order ordinary differential equations pertaining to the applications for EE & EC Engineering. Exact and reducible to exact differential equations -Integrating factors type-1, linear and reducible to linear. Applications of ODE's - Orthogonal trajectories, Rate of Decay and growth, L-R and C-R circuits. Problems. Self-Study: Applications of ODE's, Solvable for x, y, p and Clairaut's form. Applications of ordinary differential equations: L-R and C-R circuits, Newton's law of cooling, Conduction of heat. (RBT Levels: L1, L2 and L3) (8 Hours) **MODULE- 5 : LINEAR ALGEBRA** Introduction of liner algebra related to EE & EC Engineering applications. Elementary row transformation of a matrix, Rank of a matrix. Consistency and Solution of system of linear equations - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen values and Eigen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen vector. Problems Self-Study: Solution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination method. Inverse of a square matrix by Cayley- Hamilton theorem. Applications of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network system. Optimum solution. (RBT Levels: L1, L2 and L3) (8 Hours) List of Laboratory experiments (2 hours/week per batch/ batch strength 15) 10 lab sessions + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity 2 Finding the given series convergent and divergent 3 **Evaluating the limits** Finding the Partial derivatives of a given function 4 Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 5 2D plots for Cartesian and polar curves 6 Finding of intersection between two polar curves 7 Finding the angle between the radius vector and the tangent 8 Finding the pedal equation of the polar curves 9 Finding radius of curvature of a given curve SP Page 3 of 5 Asleet berett Page 3 of

10	Solution of first order differential equation and plotting the graphs
11	Program to compute area, volume and centre of gravity
12	Solving the Linear differential equations
13	Evaluating the rank of matrix
A A	Numerical exturion of system linear equations, test for consistency.

Numerical solution of system linear Suggested software's : Mathematica/MatLab/Python/Scilab

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

- The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks. The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below
- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

CIE for the practical component of the IC:

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Page 4 of 5

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- 1. B.S.Grewal:"Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V. Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New York, 6thEd., 2017.
- 5. C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. H.K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

Page 5 of 5

Course Title:	Mathematics for Computer science & Engineering Stream						
Course Code:	22MATS11	CIE Marks	50				
Course	Integrated	SEE Marks	50				
Type(Theory/Practical/Integrated)		Total Marks	100				
Teaching Hours/Week (L:T:P:S)	2:2:2:0	Exam Hours	03+02				
Total Hours of Pedagogy	40hoursTheory+10-12Lab slots	Credits	04				

Course objectives: The goal of the course Advanced Calculus, Transforms and Numerical methods (22MATS11) is to

- Familiarize the importance of series expansion and Vector calculus essential for computer science engineering.
- Analyze computer science engineering problems applying Partial derivatives and understand the value of limit (continuity) of function by using indeterminate forms.
- Develop the knowledge of polar curves to trace different types of curves.
- Applications of first order first degree differential equations.
- To develop the knowledge of matrices and linear algebra in a comprehensive manner.

Teaching-Learning Process

Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework and quizzes, and documenting students' progress.
- 5. Five assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

. une en	d of the course the student will be able to.
CO1	Express the different types of functions in power series form.
CO2	Learn the notion of partial differentiation to compute rate of change multivariate functions and understand the concept of Indeterminate forms
CO3	Apply the knowledge of calculus to solve problems related to polar curves and graphical representation of different curves.
CO4	Solve first order linear/nonlinear differential equation analytically using standard methods and express the solution in graphical form.
CO5	Make use of matrix theory for solving for system of linear equations and compute

Page 1 of 5

CO6

Learn with modern mathematical tools namely SCILAB /PYTHON /MATLAB / MATHEMATICA

Bloom's level of the course outcomes:

	Bloom's Level											
CO#	Remember (L1)	Understand (L2)	Apply (L3)	Analyze (L4)	Evaluate (L5)	Create (L6)						
CO1		V	V									
CO2	\checkmark	\checkmark										
CO3		\checkmark										
CO4	V	V										
CO5												

Course Articulation Matrix / Course mapping :

CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
CO1	3	2	2		1				1			1			
CO2	3	2	2		1				1			1			
CO3	3	2	2		1				1			1			
C04	3	2	2		1				1			1			
CO5	3	2	2		1				1			1			

Note: 1-Low mapped, 2-Medium mapped, 3-High mapped

MODULE-1 SEQUENCE AND SERIES

Introduction of Sequence and series in CS Engineering Infinite series, tests for convergence/divergence, Limit comparison test, Ratio test, root test, Raabe's test, Alternating series, Absolute convergence and conditional convergence.

Self-study: Gauss's test, Cauchy integral test **Applications:** Sequence and Series expansion in communication signals.

(RBT Levels: L1, L2 and L3)

(8 Hours)

MODULE-2: INDETERMINATE FORMS AND PARTIAL DIFFERENTIATION Introduction of Indeterminate forms and partial differentiation in CS Engineering

applications. Indeterminate forms - L'Hospital's rule. Problems. Partial differentiation, total derivative - differentiation of composite functions. Jacobian and problems. Maxima and minima for a function of two variables. Problems.

Self-study: Euler's Theorem and problems. Method of Lagrange's undetermined multipliers with single constraint.

by Asler

Applications: Applications of maxima and minima in computer science engineering.

(RBT Levels: L1, L2 and L3)

Page 2 of 5

(8 Hours)

ntroduction	MODULE-3 : DIFFERENTIAL CALCULUS
urves. Pedal e	to polar coordinates and curvature relating to CS Engineering applications. Ates, Polar curves, angle between the radius vector and tangent, angle between two equations. Curvature and Radius of curvature - Cartesian, Parametric, Polar and Per
orms. Probler	ns only.
elf-study: Ce	nter and circle of curvature, evolutes, involutes, and envelopes
applications:	Image processing.
RBT Levels: L	.1, L2 and L3) (8 Hou
	4: LINEAR AND NON-LINEAR ORDINARY DIFFERENTIAL EQUATIONS OF FIRST
ntroduction	ORDER to first order ordinary differential equations pertaining to the applications for
CS Engineerin	
	ucible to exact differential equations -Integrating factors type-1, linear and reducibl
	lications of ODE's – Orthogonal trajectories, Rate of Decay and growth, L-R and C-R
circuits. Probl	ems.
Self-Study: Ap	pplications of ODE's, Solvable for x , y ,p and Clairaut's form.
Applications	of ordinary differential equations: L-R and C-R circuits, Newton's law of cooling,
Conduction of	
(RBT Levels: I	
Elementary ro linear equatio values and Eig	MODULE- 5 :LINEAR ALGEBRA of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen oms
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution.
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution.
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network hum solution. L1, L2 and L3) (8 Hours)
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network hum solution. 1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen onus olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution. 2.1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rse of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network hum solution. 1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session	of liner algebra related to CS Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and Solution of systemns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigengen vectors, Rayleigh's power method to find the dominant Eigen value and Eigenomsolution of system of equations by Gauss-Jacobi iterative method, Gauss-eliminationres of a square matrix by Cayley- Hamilton theorem.of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networknum solution.1, L2 and L3)(8 Hours)tory experiments (2 hours/week per batch/ batch strength 15)as + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the given series convergent and divergentEvaluating the limitsFinding the Partial derivatives of a given function
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 1 2 3 4	of liner algebra related to CS Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and Solution of systemns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigengen vectors, Rayleigh's power method to find the dominant Eigen value and Eigenmsolution of system of equations by Gauss-Jacobi iterative method, Gauss-eliminationres of a square matrix by Cayley- Hamilton theorem.of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networknum solution.(8 Hours)tory experiments (2 hours/week per batch/ batch strength 15)is + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the limitsFinding the Partial derivatives of a given functionFinding the Partial derivatives of a given functionFinding the Partial derivatives, Jacobian and plotting the graph
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session	of liner algebra related to CS Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and Solution of systemnethod and approximate solution by Gauss-Seidel method. Eigengen vectors, Rayleigh's power method to find the dominant Eigen value and Eigenmsolution of system of equations by Gauss-Jacobi iterative method, Gauss-eliminationres of a square matrix by Cayley- Hamilton theorem.of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networknum solution.1, L2 and L3)(8 Hours)tory experiments (2 hours/week per batch/ batch strength 15)is + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the given series convergent and divergentEvaluating the limitsFinding the Partial derivatives of a given functionFinding partial derivatives of a given functionFinding the Partial derivatives, Jacobian and plotting the graphApplications to Maxima and Minima of two variables
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 1 2 3 4	of liner algebra related to CS Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and Solution of systemns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigengen vectors, Rayleigh's power method to find the dominant Eigen value and Eigenmsoblution of system of equations by Gauss-Jacobi iterative method, Gauss-eliminationres of a square matrix by Cayley- Hamilton theorem.of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networknum solution.1, L2 and L3)(8 Hours)tory experiments (2 hours/week per batch/ batch strength 15)is + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the given series convergent and divergentEvaluating the limitsFinding the Partial derivatives of a given functionFinding partial derivatives of a given functionFinding partial derivatives, Jacobian and plotting the graphApplications to Maxima and Minima of two variables2D plots for Cartesian and polar curves
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 1 2 3 4 5 6	of liner algebra related to CS Engineering applications.ow transformation of a matrix, Rank of a matrix. Consistency and Solution of systemnestination of a matrix, Rank of a matrix. Consistency and Solution of systemsystem of a matrix, Rank of a matrix. Consistency and Solution of systemoperation of a matrix, Rank of a matrix. Consistency and Solution of systemgen vectors, Rayleigh's power method to find the dominant Eigen value and Eigenmsoplution of system of equations by Gauss-Jacobi iterative method, Gauss-eliminationof a square matrix by Cayley- Hamilton theorem.of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a networknum solution.(8 Hours)tory experiments (2 hours/week per batch/ batch strength 15)is + 1 repetition class + 1 Lab AssessmentFinding the sum of the series up to infinityFinding the given series convergent and divergentEvaluating the limitsFinding the Partial derivatives of a given functionFinding partial derivatives, Jacobian and plotting the graphApplications to Maxima and Minima of two variables2D plots for Cartesian and polar curvesFinding of intersection between two polar curves
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 1 2 3 4 5 6 7	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rese of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution. .1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between two polar curves Finding the angle between the radius vector and the tangent
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 11 2 3 4 5 6 7 8	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms oblution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination res of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution. 1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the given series convergent and divergent Evaluating the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between the radius vector and the tangent Finding the guedien the radius vector and the tangent Finding the pedal equation of the polar curves
Elementary ro linear equatio values and Eig vector. Proble Self-Study: So method. Inver Applications system. Optim (RBT Levels: I List of Labora 10 lab session 1 1 2 3 4 5 6 7	of liner algebra related to CS Engineering applications. ow transformation of a matrix, Rank of a matrix. Consistency and Solution of system ns - Gauss-Jordan method and approximate solution by Gauss-Seidel method. Eigen gen vectors, Rayleigh's power method to find the dominant Eigen value and Eigen ms olution of system of equations by Gauss-Jacobi iterative method, Gauss-elimination rese of a square matrix by Cayley- Hamilton theorem. of Linear Algebra: Network Analysis, Markov Analysis, Critical point of a network num solution. .1, L2 and L3) (8 Hours) tory experiments (2 hours/week per batch/ batch strength 15) is + 1 repetition class + 1 Lab Assessment Finding the sum of the series up to infinity Finding the limits Finding the Partial derivatives of a given function Finding partial derivatives, Jacobian and plotting the graph Applications to Maxima and Minima of two variables 2D plots for Cartesian and polar curves Finding the angle between two polar curves Finding the angle between the radius vector and the tangent

Mully & Co

E M

11	Program to compute area, volume and centre of gravity
12	Solving the Linear differential equations
13	Evaluating the rank of matrix
L 14 Suggested see	Numerical solution of system linear equations, test for consistency

Suggested software's : Mathematica/MatLab/Python/Scilab

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks. The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below

- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

<u>CIE for the practical component of the IC:</u>

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- **1**. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Page 4 of 5

DEPARTMENT OF MATHEMATICS, FACULTY OF ENGG. &TECH., SHARNBASVA UNIVERSITY, KALABURAGI

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- 1. B.S.Grewal:"Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V. Ramana: "Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. N.P Bali and Manish Goyal: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. C. Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New York, 6thEd., 2017.
- C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K. Dass and Er. Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

A Ce

Course Title:	Mathematics for Civil Engineering	Stream-II	
Course Code:	22MATC21	CIE Marks	50
Course Type	Integrated	SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
Teaching Hours/ Week	2:2:2:0	Exam Hours	03+02
Total Hours of Pedagogy	40hoursTheory+10-12Lab slots	Credits	04

Course objectives :The goal of the course **Advanced Calculus, Transforms and Numerical methods (22MATC21)**is to

- **Familiarize** the importance of Integral calculus and Vector calculus essential for Civil engineering.
- Analyze Civil engineering problems applying Partial Differential Equations.
- **Develop** the knowledge of solving Civil engineering problems numerically.

Teaching-Learning Process Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework and quizzes, and documenting students' progress.
- 5. Five assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

the en	d of the course the student will be able to:
CC	Apply the knowledge of Integral calculus to solve Double and Triple Integral for
	evaluating surface area and volume related to Civil Engineering.
CO	2 Illustrates the Applications of Multivariate calculus to understand the solenoidal
	and irrational vectors and also exhibit the inter dependence of line, surface and
	volume integrals.
CC	
	engineering.
CC	Apply the concept of numerical techniques to solve algebraic and non-algebraic
	equations for solving Civil engineering problems.
CC	
	order differential equations.
CC	
	MATHEMATICA to solve problems in Civil engineering.
	223

Ashot

C01 3 2 2 1 1 1 1 1 C02 3 2 2 1 1 1 1 1 1 C03 3 2 2 1 1 1 1 1 1 1 C04 3 2 2 1					ourse				Bloc	om's l	level							
C01 $$ $$ $$ $C02$ $$ $$ $$ $$ $C03$ $$ $$ $$ $$ $C04$ $$ $$ $$ $$ $C05$ $$ $$ $$ $$ $C05$ $$ $$ $$ $$ $C03$ 2 $$ $$ $$ $C04$ $$ $$ $$ $$ $C03$ 2 2 1 1 $C04$ 2 2 2 1 $C03$ 2 2 1 1 $C03$ 2 2 1 1 $C04$ 3 2 2 1 $C03$ 3 2 2 1 $C04$ 3 2 2 1 $C04$ 3 2 2 1 $C04$ 3 2 2 1 1 1 $C03$ 3 2 2 1 1 1 $C04$ 3 2 2 1 1 $C04$ 3 2 2 1 1 1 1 $C03$ 3 2 2 1 1 1 1 $C04$ 3 2 2 1 1 1 2 2 1 1 1 1 1 1 2 2 2 1 </th <th></th> <th>CO</th> <th>#</th> <th></th> <th colspan="2"></th> <th colspan="2"></th> <th></th> <th></th> <th></th> <th>-</th> <th>E</th> <th></th> <th>te</th> <th></th> <th></th>		CO	#									-	E		te			
CO3 $$ $$ $$ $CO4$ $$ $$ $$ $CO4$ $$ $$ $$ $C05$ $$ $$ $$ $$ $$ $$ Course Articulation Matrix / Course mapping :Course Articulation Matrix / Course mapping :Matrix Matrix M		CO 1	1		V		√			√								
$C04$ $$ $$ $$ Course Articulation Matrix / Course mapping :Course Articulation Matrix / Course mapping : $C0#$ $\overline{0}$ <				-	\checkmark					\checkmark								
Cos V V Course Articulation Matrix / Course mapping : Course Matrix : Course Matrix : Course Matrix : Course Matrix : Matrix : Matrix : Module-1 : Definite Integrals and Improper Integrals. Introduction to Integral Calculus in Civil Engineering applications. Multiple Integral: Problems. Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions: Problems. <th colsp<="" th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										-							
Course Articulation Matrix / Course mapping : Course Articulation Matrix / Course mapping : Co# Co					<u>√</u>	_	√						_					
CO#CO <th></th> <th></th> <th>5</th> <th></th> <th>V</th> <th></th> <th>ν</th> <th></th> <th></th> <th>V</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			5		V		ν			V								
C01 3 2 2 1 1 1 1 1 1 C02 3 2 2 1 <th1< th=""> 1 1 1<td>Cou</td><td>rse Art</td><td>icula</td><td>tion M</td><td>latrix</td><td>/ Cou</td><td>irse m</td><td>appin</td><td>ig :</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Cou	rse Art	icula	tion M	latrix	/ Cou	irse m	appin	ig :									
CO2 3 2 2 1 1 1 1 1 CO3 3 2 2 1 1 1 1 1 1 CO4 3 2 2 1 1 1 1 1 1 1 CO5 3 2 2 1		CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03	
C03 3 2 2 1				_	-		1				1			-				
CO4 3 2 2 1 1 1 1 1 CO5 3 2 2 1 </th <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>				_	_													
CO5 3 2 2 1 1 1 1 Note: 1-Low mapped, 2-Medium mapped, 3-High mapped Module-1 : Definite Integrals and Improper Integrals. Introduction to Integral Calculus in Civil Engineering applications. Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by of order of integration, changing into polar coordinates. Applications to find: Area and Volume double integral. Problems. Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma function Problems. Self-Study: Volume by triple integration, Center of gravity. Applications: Applications to mathematical quantities (Area, Surface area, Volume),. Analysis probabilistic models. (RBT Levels: L1, L2 and L3) (8 h) Introduction to Vector Calculus in Civil Engineering applications. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and 1 Statement of Green's theorem, Stoke's theorem and Gauss divergence theorem and Problems. Self-Study: Volume integral and Proof of Green's theorem, Stoke's theorem and Gauss diverge theorem. Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Anal stream lines.		-			-		_											
Module-1 : Definite Integrals and Improper Integrals. Introduction to Integral Calculus in Civil Engineering applications. Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by of order of integration, changing into polar coordinates. Applications to find: Area and Volume double integral. Problems. Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma function Problems. Self-Study: Volume by triple integration, Center of gravity. Applications: Applications to mathematical quantities (Area, Surface area, Volume),. Analysis probabilistic models. (RBT Levels: L1, L2 and L3) (8 here) Module-2 :Vector Calculus Introduction to Vector Calculus in Civil Engineering applications. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and statement of Green's theorem, Stoke's theorem and Gauss divergence theorem and Problems. Self-Study: Volume integral and Proof of Green's theorem, Stoke's theorem and Gauss divergence theorem and Gauss divergence theorem and Functions. Vector Integration: Line integral and Proof of Green's theorem, Stoke's theorem and Gauss divergence theorem and Gauss divergence theorem. Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Anal stream lines.					-						-							
Module-2 :Vector Calculus Introduction to Vector Calculus in Civil Engineering applications. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and i Statement of Green's theorem, Stoke's theorem and Gauss divergence theorem and Problems. Self-Study: Volume integral and Proof of Green's theorem, Stoke's theorem and Gauss diverge theorem. Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Anal stream lines.	ofo	rder of	integ	ls: Eva	luation , chang	n of d	ouble	and tri	ple in	tegral	s, eval	uation	of do					
 Introduction to Vector Calculus in Civil Engineering applications. Vector Integration: Line integrals, Surface integrals. Applications to work done by a force and a Statement of Green's theorem, Stoke's theorem and Gauss divergence theorem and Problems. Self-Study: Volume integral and Proof of Green's theorem, Stoke's theorem and Gauss diverge theorem. Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Anal stream lines. 	of o dou Beta Pro Self	rder of ble inte a and Ga blems. f-Study: plicatio	integ gral. amma : Volu ns: A	ls: Eva ration, Proble a funct ume by pplica	lluation , chang ems. tions: I v triple	n of d ging ir Definit integ	ouble nto pol tions, j ration	and tri ar coo proper , Cente	ple in rdinat ties, r er of g	tegral: tes. Ap elation ravity.	s, eval oplicat n betw	uation ions to veen B	of do find: eta ar	Area	and V	/olun functi	ne b	
Applications: Heat and mass transfer, oil refinery problems, environmental engineering. Anal stream lines.	of o dou Bet Pro Self App pro	rder of ble inte a and Ga blems. f-Study: plicatio babilist	integ gral. amma : Volu ns: A ic mo	ls: Eva ration, Proble a funct ume by pplica odels.	lluation , changers. tions: I v triple tions t	n of d ging ir Definit integ	ouble nto pol tions, p ration hemat	and tri ar coo proper , Cente tical qu	ple in rdinat ties, r er of g lantiti	tegral tes. Ap elation ravity. es (Ar	s, eval pplicat n betw ea, Su	uation ions to veen B rface a	of do find: eta ar	Area	and V	/olun functi nalys	ne b ions is o	
(RBT Levels: L1, L2 and L3) (8 h	of o dou Bet: Pro Self App pro (RB Intr Vec Stat	rder of ble inte a and Ga blems. f-Study: plicatio babilist T Level roducti tor Inte tement of f-Study:	integ gral. Volu ns: A ic mo s: L1, on to gratio	ls: Eva ration, Proble a funct ume by pplica odels. , L2 an Vecto on: Lin een's tl	lluation , changers. cions: I v triple tions t d L3) or Calc he integ	n of do ging ir Definit integ o mat culus grals, n, Stol	ouble nto pol tions, j rration hemat hemat Mo in Civ Surfac ke's th	and tri ar coo proper , Cente cical qu dule-2 il Engi se integ eorem	ple in rdinat rties, r er of g antiti : Vect : Vect : Reeri grals. <i>J</i> and (tegral tes. Ap elation ravity. es (Ar tor Ca ng ap Applic Gauss	s, eval oplicat n betw ea, Su <u>lculus</u> plicat ations diverg	uation ions to reen B rface a ions. to wo gence t	of do find: eta ar area, V wrk do heore	Area nd Gan Volumo ne by em anc	and V nma f e),. A a for d Pro	/olun functi nalys (8 ce an blem	ions is o <u>hou</u> d flu s.	

Import:	anceo	Module-3: Partial Differential Equations (PDE's) f partial differential equations for Civil Engineering application.	
Formati	on of F	PDE's by elimination of arbitrary constants and functions. Solution of non-	
homoge		PDE by direct integration. Homogeneous PDEs involving derivative with res	most to on
indepen	dent v	rariable only. Solution of Lagrange's linear PDE. Derivation of one-dimension	spect to on
equation	n and w	wave equation.	lai neat
variable	ay: 30	lution of one-dimensional heat equation, wave equation by the method of se Charpits method.	eparation of
		Design of structures (vibration of rod/membrane).	
(DBT Lo	vole: I		(0 h
	veis: L	Module-4 :Numerical methods	(8 hours)
Import	anceo	f numerical methods for discrete data in the field of Civil Engineering.	
Solution	of alg	a humerical methods for discrete data in the field of civil Engineering.	the de (an)
formula	a) Pro	ebraic and transcendental equations: Regula-Falsi and Newton-Raphson me	thoas (on
Newton'	's divid	ces, Interpolation using Newton's forward and backward difference formula	e,
proof). F	Proble	ded difference formula and Lagrange's interpolation formula (All formulae w	inout
			-
Numeric		egration: Trapezoidal, Simpson's (1/3) rd and (3/8) th rules (without proof). Pr	roblems.
Self-Stu	dv Bi	section method, Lagrange's inverse Interpolation and Weddles rule.	
Annlica	tions:	Estimating the approximate roots enterpolation and weddles rule.	F ' 1'
approvi	mate s	Estimating the approximate roots, extreme values, Area, volume, surface are solutions to Civil engineering problems.	ea. Finding
(RRT Le	mate s		
(IND I LC			
	, eis. L	(1, L2 and L3) [8]	8 hours)
Introdu		Module-5 : Ordinary Differential Equation	
Introdu	iction	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo	
handlin	iction ig Civi	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo l Engineering applications.	
handlin Solution	iction ig Civi n of sec	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant	or
handlin Solution coefficie	iction ig Civi of sec ents, In	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo I Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, application	or
handlin Solution coefficie	iction ig Civi of sec ents, In	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant	or
handlin Solution coefficie Differen	iction ig Civi of sec ents, In itial eq	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications uations LCR Circuits.	or
handlin Solution coefficie Differen Self-Stu	iction ng Civi n of sec ents, In ntial eq idy: Sir	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order fo l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications utions LCR Circuits.	o r ations of
handlin Solution coefficie Differen Self-Stu Applica	nction ng Civil n of sec ents, In ntial eq ndy: Sir ntions:	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications utions LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Le	nction ng Civi n of sec ents, In ntial eq ndy: Sir ntions: evels: L	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem .1, L2 and L3)	o r ations of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	nction ng Civi n of sec ents, In ntial eq ndy: Sin ntions: evels: L abora	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a point of the second and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3)	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	nction ng Civi n of sec ents, In ntial eq ndy: Sin ntions: evels: L abora	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem .1, L2 and L3)	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	nction ng Civi n of sec ents, In ntial eq ndy: Sin ntions: evels: L abora	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a point of the second and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3)	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	nction ng Civi n of sec ents, In ntial eq ndy: Sin tions: vels: L abora sessior	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem. .1, L2 and L3) (atory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civi a of sec ents, In atial eq ady: Sin ations: evels: L abora session	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a polications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem. .1, L2 and L3) itory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals.	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civi a of sec ents, In atial eq ady: Sin tions: evels: L abora session 1 2	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3) otory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions.	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civi a of sec ents, In atial eq ady: Sin tions: vels: L abora session 1 2 3	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3) itory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals	er etions of ns.
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civi of sec ents, In itial eq ady: Sin itions: vels: L abora session 1 2 3 4	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a polications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Beta and Gamma functions. Finding surface integrals Evaluation of surface area by Green's theorem.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civi of sec ents, In tial eq ady: Sin tions: vels: L abora session 1 2 3 4 5	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem. .1, L2 and L3) etaulation of Double and triple integrals. Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civin of sec- ents, In atial eq ady: Sin tions: evels: L abora session 1 2 3 4 5 6	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem. 1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface integrals Evaluation of Surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civin of sec- ents, In atial eq ady: Sin tions: evels: L abora session 1 2 3 4 5 6 7	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for a lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem. 1, L2 and L3) (Interpretention of Double and triple integrals. Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civin of sec- ents, In atial eq ady: Sin tions: vels: L abora session 1 2 3 4 5 6 7 8	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civin of sec- ents, In atial eq ady: Sin tions: evels: L abora session 1 2 3 4 5 6 7	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for l Engineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem: 1, L2 and L3) (1) tory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule.	etions of
handlin Solution coefficie Differen Self-Stu Applica (RBT Let List of L	action ag Civin of sec- ents, In atial eq ady: Sin tions: vels: L abora session 1 2 3 4 5 6 7 8	Module-5 : Ordinary Differential Equation to Linear ordinary differential equations of second and Higher order for lengineering applications. cond and higher order Ordinary Linear Differential Equations with constant overse Differential Operator Method, Variation of Parameters method, applications LCR Circuits. ngular Solutions and ODE with variable co-efficient. Application of second order ODE, initial conditions and initial value problem (1, L2 and L3) tory experiments (2 hours/week per batch/ batch strength 15) ns + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule.	etions of

og il stop Aslob & sparing

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

- The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below
- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

<u>CIE for the practical component of the IC:</u>

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- 1. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. **N.PBali and Manish Goyal:** "A textbook of Engineering Mathematics" Laxmi Publications,10th Ed.,2022.
- 4. **C.Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw–Hill Book Co., New york, 6thEd., 2017.
- 5. **C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

Aslot)

Course Title:	Mathematics for Mechanical Engir	eering Stream-II	
	22MATM21	CIE Marks	50
		SEE Marks	50
(Theory/Practical/Integrated)		Total Marks	100
0 /	2:2:2:0	Exam Hours	03+02
Total Hours of Pedagogy	40hoursTheory+10-12Lab slots	Credits	04

Course objectives :The goal of the course **Advanced Calculus, Transforms and Numerical methods (22MATM21)**is to

- **Familiarize** the importance of Integral calculus and Vector calculus essential for mechanical engineering.
- Analyze mechanical engineering problems applying Partial Differential Equations.
- **Develop** the knowledge of solving mechanical engineering problems numerically.

Teaching-Learning Process

Pedagogy(General Instructions):

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. In addition to the traditional lecture method, different types of innovative teaching methods may be adopted so that the delivered lessons shall develop student's theoretical and applied mathematical skills.
- 2. State the need for Mathematics with Engineering Studies and Provide real-life examples.
- 3. Support and guide the students for self-study.
- 4. You will also be responsible for assigning homework and quizzes, and documenting students' progress.
- 5. Five assignment problems on each module.
- 6. Encourage the students for group learning to improve their creative and analytical skills.
- 7. Show short related video lectures in the following ways:
 - As an introduction to new topics (pre-lecture activity).
 - As a revision of topics (post-lecture activity).
 - As additional examples (post-lecture activity).
 - As an additional material of challenging topics (pre-and post-lecture activity).
 - As a model solution of some exercises (post-lecture activity).

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

Apply the knowledge of Integral calculus to solve Double and Triple Integral for evaluating surface area and volume related to Mechanical Engineering.
evaluating surface area and volume related to Mechanical Engineering.
Illustrates the Applications of Multivariate calculus to understand the solenoidal
and irrational vectors and also exhibit the inter dependence of line, surface and
volume integrals.
Construct a variety of Partial Differential Equations for the problems in
mechanical engineering.
Apply the concept of numerical techniques to solve algebraic and non-algebraic
equations for solving mechanical engineering problems.
Demonstrate the various physical modules in mechanical engineering through
high a order differential equations
higher order differential equations.
Modern mathematical tools namely SCILAB /PYTHON /MATLAB /
MATHEMATICA to solve problems in mechanical engineering.

S 4

				ourse o				Bloc	om's I	evel								
	CO	#					erstand		pply	A	nalyze	E	Evaluate		Crea			
	CO	L	(L	√		_(L2) √)	(L3) √		(L4)		(L5)		(Le	5)		
		CO2					-			$\frac{\vee}{}$								
	COS			\checkmark														
	CO 4			\checkmark					\checkmark									
	CO	5		\checkmark														
Cou	rse Art	icula	tion M	latrix /	/ Cou	ırse m	appin	g :										
	CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	DSO 2		
	C01	3	2	2		1				1			1					
	CO2	3	2	2		1				1			1	-				
	CO3	3	2	2		1				1			1					
	CO4	3	2	2		1				1			1					
	CO5	3	2	2		1				1			1					
	blems. - Study :	ns: A	pplica	triple i tions to				0	,		rface a	rea, V	olumo	e),. A	nalys	is c		
App	licatio habilisti	c mc		113)											(8	ho		
App prol	blicatio babilisti T Level		L2 an	4 10)					or Ca	lculus								
App prol (RB	babilisti T Level:	s: L1,			ilue							tion						
App prol (RB Intr Vect Stat	oabilisti T Level: oductio tor Integ ement o	s: L1, on to gratiof Gro	Vecto on: Lin een's tl	or Calcu e integ neorem	rals, : , Stol	in Meo Surfac ke's th	c hanic e integ eorem	ral Eng grals. A and C	ginee Applic Gauss	ring a ations diverg	pplica to wo ence tl	rk do heore	ne by m and	l Pro	blem	s.		
App prol (RB Intr Vect Stat Self theo App stre	roduction for Integration for Integratio for Integration for Integration for Integration for I	s: L1, on to gratiof Gro Volu ns: H s.	Vecto on: Lin een's th ume inf	e integ neorem cegral a d mass	rals, : , Stol nd Pi	in Mec Surfac ke's th roof of	c hanic e integ eorem f Greer	al Eng grals. A and C a's the	ginee Applic Gauss orem,	ring a ations diverg Stoke	pplica to wo ence tl 's theo	rk do heore rem a	ne by m and and Ga	l Pro auss o	blem diver ng. An	s. ger ialy		
App prol (RB Intr Vect Stat Self theo App stre	oabilisti T Level: roductio tor Inte ement o -Study: orem.	s: L1, on to gratiof Gro Volu ns: H s.	Vecto on: Lin een's th ume inf	e integ neorem cegral a d mass	rals, : , Stol nd Pi	in Mec Surfac ke's th roof of	c hanic e integ eorem f Greer	al Eng grals. A and C a's the	ginee Applic Gauss orem,	ring a ations diverg Stoke	pplica to wo ence tl 's theo	rk do heore rem a	ne by m and and Ga	l Pro auss o	blem diver ng. An	s. ger		
App prol (RB Intr Vect Stat Self theo App stre	roduction for Integration for Integratio for Integration for Integration for Integration for I	s: L1, on to gratiof Gro Volu ns: H s.	Vecto on: Lin een's th ume inf	e integ neorem cegral a d mass	rals, : , Stol nd Pi	in Mec Surfac ke's th roof of	c hanic e integ eorem f Greer	al Eng grals. A and C a's the	ginee Applic Gauss orem,	ring a ations diverg Stoke	pplica to wo ence tl 's theo	rk do heore rem a	ne by m and and Ga	l Pro auss o	blem diver ng. An	s. ger ialy		

Module-3: Partial Differential Equations	
Importance of partial differential equations for Mechanical Engineering of PDE's by elimination of arbitrary constants and function	neering application.
Formation of PDE's by elimination of arbitrary constants and function homogeneous PDE by direct integration. Homogeneous PDEs involving the second se	
independent variable only. Solution of Lagrange's linear PDE. Derivat	ing derivative with respect to one
equation and wave equation.	ion of one-unnensional near
Self-Study: Solution of one-dimensional heat equation, wave equation	n by the method of separation of
variables and Charpits method.	if by the method of separation of
Applications: Design of structures (vibration of rod/membrane).	
(RBT Levels: L1, L2 and L3)	(8 hours)
Module-4 :Numerical methods	(0.100.00)
Importance of numerical methods for discrete data in the field o	f Mechanical Engineering.
Solution of algebraic and transcendental equations: Regula-Falsi and	
formulae). Problems.	
Finite differences, Interpolation using Newton's forward and backwar	rd difference formulae,
Newton's divided difference formula and Lagrange's interpolation for	mula (All formulae without
proof). Problems.	
Numerical integration: Trapezoidal, Simpson's (1/3) rd and (3/8) th rul	es (without proof). Problems.
Self-Study: Bisection method, Lagrange's inverse Interpolation and V	Veddles rule
Applications: Estimating the approximate roots, extreme values, Are	
approximate solutions to Mechanical engineering problems.	a, volume, surface area. I manig
(RBT Levels: L1, L2 and L3)	(8 hours)
Module-5 : Ordinary Differential Equa	
Introduction to Linear ordinary differential equations of second	and Higher order for
handling Mechanical Engineering applications.	5
Solution of second and higher order Ordinary Linear Differential Equa	ations with constant
coefficients, Inverse Differential Operator Method, Variation of Param	neters method, applications of
Differential equations LCR Circuits.	
Self-Study: Singular Solutions and ODE with variable co-efficient.	
Applications: Application of second order ODE, initial conditions and	i initial value problems.
(RBT Levels: L1, L2 and L3)	(8 hours)
List of Laboratory experiments (2 hours/week per batch/ batch	strength 15j
10 lab sessions + 1 repetition class + 1 Lab Assessment	
1 Evaluation of Double and triple integrals.	
3 Finding surface integrals4 Evaluation of surface area by Green's theorem.	
4 Evaluation of surface area by Green's theorem.	
5 Formation of PDE w.r.t. one independent variable.	
6 Solution of PDE by direct integration.	ula
7 Newton's forward and Backward interpolation form	Ird rule
8 Solution of numerical integration by Simpson's (1/3)	
9 Finding the roots for second order ODE.	notor
10 Finding the roots by the method of variation of parar	neter.
(Mattach / Brithon / Scilph	
Suggested software's : Mathematica /MatLab/Python/Scilab	1
	and I
A lolith	Jojoch
OI NON GREVIA REMOVI	
\mathcal{N}	

. · · ·

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

- The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below
- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

CIE for the practical component of the IC:

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

- 1. **B.S.Grewal**: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.
- 2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Ashol

the for

Reference Books

17 6

- 1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. **N.PBali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. **C.Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw-Hill Book Co., New york, 6thEd., 2017.
- 5. **C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

		E	nginee	ring.		na 1997 - 1									-	
	CO6	F	amiliar MATLA	ize wi				matica	al tool	s nam	ely SC	ILAB	/PYTH	ION		
BIO	om's le	evel	of the	course	e outc	omes	:	Pla	om'o	Loval						
	со	#	Rem	ember	- Ih	nders	tand	1	om's pply		nalyz	0	Evalua	to	Cre	ato
				L1)		(L2			L3		(L4)		(L5)		(L	
	CO	1									()		(==)		(-)
	CO	2				V			V							-
	CO	3		\checkmark												
	CO			\checkmark			i 1 e tê are b		\checkmark	n se litter e						
	CO								\checkmark							
Cou	rse Ar	ticul	ation	Matrix	k / Co	urse r	nappi	ng :								
	CO#	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
	C01	3	2	2		1		-		1			1			
	CO2	3	2	2		1				1			1			65
	CO3	3	2	2		1				1		1. 200	1			
	CO4 CO5	3	2	2		1				1			1	-		-
Not	e: 1-Lo			_	lium n	1	d 3-Hi	ah ma	nned	1			1			
char Volu Beta Prob Self App prob (RB Imp app Vect sets Line	tiple In nge of o ume by a and G olems. -Study licatio oabilist T Level licatio cor space , Basis ar tran	v: Vol doub amm v: Vol ons: A tic mo ls: L1 ce of ns. ces: I and co sform	r of inte ble inte a func ume by Applica odels. , L2 an Vector Definiti dimens mation	egratio egral. F tions: 1 / triple tions t d L3) r Spac on and ion. s: Defi	on, cha Proble: Definit e integ to mat co mat e and d exam nition	nging ms. tions, ration hemat Mod Linea uples, and e	into p prope , Centu tical qu lule-2 ur Tra subspa xampl	olar c rties, n er of g uantit :Vect nsfor ace, lin es, Al	oordin relatio gravity ies (Ar or Cal matio near s gebra	nates. on bet r. rea, Su ns in pan, L of tra	Applic ween E urface a the fie inearly	ation seta a area, eld of v inde	s to fir nd Gar Volum EC an epende	nd: An mma ne),. A d EE ent an rix of	ea an funct nalys (8 engi id dej	ions. sis of hou neer pend ear
tran Inne	sforma r prod	ation. uct s	Chang paces a	e of co and ort	ordin: hogor	ates, F nality.	Rank a	nd nu	llity of	f a line	ear ope	rato	r, Rank	-Null		
App	<mark>-study</mark> : licatio Г Level	ns: I	mage p	rocess												a. houi
R	α	2	/	SI.	0	R		Æ	à	$+\Lambda$		24				

mportan	ce of numerical methods for discrete data in the field of EC and EE engineering
applicatio	115.
Solution of method (o	f polynomial and transcendental equations: Regula-Falsi method and Newton-Raphson nly formulae). Problems.
Finite diffe	rences, Interpolation using Newton's forward and backward difference formulae,
Newton's (livided difference formula and Lagrange's interpolation formula (All formulae without
proof). Pro	blems.
Self Study	: Bisection Method, Secant method, Numerical differentiation and Inverse Lagrange's
method.	, and the second of the second
Applicatio	ons: Power Systems
(RBT Leve	ls: L1, L2 and L3) (8 hour
	Module-4 : Laplace Transforms
Introduct	on to Laplace Transforms in EC and EE Engineering
Laplace T	ransforms: Definition, Laplace transforms of Flementary functions, properties (with
proof per	iouic function, Unit step function. Unit impulse function
inverse L	aplace Transforms: Definition, Convolution Theorem (without proof) and Findi
Inverse La	place transform by convolution Theorem. Solution of Linear Differential equations usi
Laplace Tr	ansforms and Applications.
Self-Study	: Laplace transform of ODE.
Applicatio	ns: Notwork analyzia Cignal Duranti II
(DDT I	ons: Network analysis, Signal Processing, and Image Processing.
(RBT Leve	IS: L1, L2 and L3) (8 hour
Introducti handling I Solution of	(8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant
Introducti handling I Solution of coefficient Differentia Self-Study	(8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications o l equations LCR Circuits. : Singular Solutions.
Introducti handling I Solution of coefficient Differentia Self-Study	(8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Fisecond and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. Ins: Application of second order ODE, initial conditions and initial value problems.
Introducti handling I Solution of coefficient Differentia Self-Study	(8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications o l equations LCR Circuits. : Singular Solutions.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses	(8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications o l equations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. ds: L1, L2 and L3) (8 hours) poratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment
Introduction handling I Solution of coefficient Differentia Self-Study Application (RBT Leven List of Lab 10 lab ses	Is: L1, L2 and L3 (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. els: L1, L2 and L3) (8 hour: oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses	Is: L1, L2 and L3) (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. els: L1, L2 and L3) coratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses	Item (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of lequations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. ds: L1, L2 and L3) (8 hour: Coratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses	Item (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. 'second and higher order Ordinary Linear Differential Equations with constant 'second and higher order Ordinary Linear Differential Equations with constant 'second and higher order Ordinary Linear Differential Equations with constant 'second and higher order Order Method, Variation of Parameters method, applications of lequations LCR Circuits. : Singular Solutions. 'second order of second order ODE, initial conditions and initial value problems. :ls: L1, L2 and L3) (8 hour: 'soratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals Evaluation of surface area by Green's theorem.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses 10 lab ses 1 3 4 5	Is: L1, L2 and L3) (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications o l equations LCR Circuits. : Singular Solutions. ms: Application of second order ODE, initial conditions and initial value problems. els: L1, L2 and L3) (8 hours) oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses 10 lab ses 1 3 4 5 6	Is: L1, L2 and L3) (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. els: L1, L2 and L3) (8 hour oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Beta and Gamma functions. Finding surface integrals Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses 1 1 2 3 4 5 6 7	Is: L1, L2 and L3) (8 hour Module-5 :Ordinary Differential Equation Ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. orse: Application of second order ODE, initial conditions and initial value problems. els: L1, L2 and L3) (8 hour: oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatio (RBT Leve List of Lab 10 lab ses 1 1 2 3 4 5 6 7 8	Is: L1, L2 and L3 (8 hour Module-5 :Ordinary Differential Equation Ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ms: Application of second order ODE, initial conditions and initial value problems. Is: L1, L2 and L3) (8 hour: oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatic (RBT Leve List of Lab 10 lab ses 1 1 2 3 4 5 6 7 8 9	Is: L1, L2 and L3 (8 hour Module-5 :Ordinary Differential Equation ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. "second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ons: Application of second order ODE, initial conditions and initial value problems. ds: L1, L2 and L3) (8 hour oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of Surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule. Finding the roots for second order ODE.
Introducti handling I Solution of coefficient Differentia Self-Study Applicatic (RBT Leve List of Lab 10 lab ses 10 lab ses 1 3 4 5 6 7 8 9 10	Is: L1, L2 and L3 (8 hour Module-5 :Ordinary Differential Equation Ion to Linear ordinary differential equations of second and higher order for EC and EE Engineering applications. Second and higher order Ordinary Linear Differential Equations with constant s, Inverse Differential Operator Method, Variation of Parameters method, applications of l equations LCR Circuits. : Singular Solutions. ms: Application of second order ODE, initial conditions and initial value problems. Is: L1, L2 and L3) (8 hour: oratory experiments (2 hours/week per batch/ batch strength 15) sions + 1 repetition class + 1 Lab Assessment Evaluation of Double and triple integrals. Evaluation of surface area by Green's theorem. Formation of PDE w.r.t. one independent variable. Solution of PDE by direct integration. Newton's forward and Backward interpolation formula. Solution of numerical integration by Simpson's (1/3) rd rule.

2 Ashoh and and

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

<u>Continuous Internal Evaluation(CIE):</u>

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks. The CIE marks for the theory component shall be 50 marks and scored will be reduced

- to 30.As below
- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

<u>CIE for the practical component of the IC:</u>

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

Suggested Learning Resources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

1. B.S.Grewal: "Higher Engineering Mathematics", Khanna publishers, 44th Ed., 2021.

2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018. Reference Books

1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education, 11th Ed., 2017

- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. **N.PBali and Manish Goyal:** "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. C.Ray Wylie, Louis C. Barrett: "Advanced Engineering Mathematics" McGraw-Hill Book Co., New york, 6thEd., 2017.
- 5. C.B Gupta, S. R Singh and Mukesh Kumar: "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.

G Aslot

Course Title:		Mathematics for Com	puter Science an	d Engineering Strea	m-ll
Course Code:		22MATS21		CIE Marks	50
Course Type		Integrated		SEE Marks	50
(Theory/Practi	cal/Integrated)			Total Marks	100
Teaching Hour	s/Week (L:T:P:S)	2:2:2:0		Exam Hours	03+02
Total Hours of	Pedagogy	40 hoursTheory+10-1	2Lab slots	Credits	04
Numerical • Fan Con	methods (22M niliarize the impoputer science a	portance of Integral c nd engineering.	alculus and Vect	tor calculus essenti	al for
Diff	erential Equatio	and electrical engine ns. edge of solving Comp			ems
nun	nerically.		uter science and	r engineering probl	ems
	earning Process				
	eneral Instruct			the attainment of t	ho various
course outco		which teachers can u	ise to accelerate	the attainment of t	ne various
		ditional lecture meth	od. different tyn	es of innovative tea	ching metho
may	be adopted so th	hat the delivered less	ons shall develop	p student's theoreti	cal and appli
	ematical skills.			1.0	
		thematics with Engin		and Provide real-lif	e examples.
3. Supp	ort and guide th	e students for self–st onsible for assigning	uuy. homework and a	auizzes and docum	enting
	ents' progress.	onsidie for assigning	nomework and	quizzes, and ubcum	enting
5 Five	assignment nrol	olems on each modul	2.		
6 Enco	urage the stude	nts for group learning	to improve the	ir creative and anal	ytical skills.
7. Show	v short related v	ideo lectures in the fo	ollowing ways:		-
	As an introdu	ction to new topics (pre-lecture activ	vity).	
	As a revision	of topics (post-lectur	e activity).		
	As additional	examples (post-lectu	re activity).		
•	As an additio	nal material of challe	nging topics (pr	e-and post-lecture a	activity).
•		olution of some exerc	ises (post-lectur	e activity).	
Course outc	ome (Course Sl	kill Set)			
At the end of	the course the s	student will be able to):	11 J. Tuinle int	a mal fan
C01	evaluating surf	vledge of Integral calc ace area and volume	related to Comp	outer Science and	egrai for
CO2	Annly the know	vledge of Linear Alge d linearly independer	ora to find the line of linearly dependent	near space, basis, ndent of vector spa	ce
CO3	Apply the conc	ent of numerical tech	niques to solve a	algebraic and non-a	lgebraic
	equations for C	omputer Science and ackward Finite differ	engineering pro	oblems, Studying th	e
	Internolation				
CO4	Apply the know domain (Signal	vledge of Laplace tran and image processin equation (Partial fract	g) which transfo	e domain to freque orms differential eq	ncy Juation
		J Aslu	B E	Derth	

. .

CO5	Demonstrate the various physical modules through higher differential equations and solve such linear ordinary differential equations related to the Computer Science and Engineering.						
CO6	Familiarize with modern mathematical tools namely SCILAB /PYTHON /MATLAB / MATHEMATICA						

Bloom's level of the course outcomes:

	Bloom's Level											
CO#	Remember	Understand	Apply	Analyze	Evaluate	Create						
	(L1)	(L2)	(L3)	(L4)	(L5)	(L6)						
C01	\checkmark											
CO2												
CO3	\checkmark											
CO4	\checkmark		\checkmark									
CO5	\checkmark		\checkmark									

Course Articulation Matrix / Course mapping :

CO#	P01	P02	P03	P04	P05	P06	P07	P08	60d	P010	P011	P012	PS01	PS02	PS03
C01	3	2	2		1				1			1			
CO2	3	2	2		1				1			1			
CO3	3	2	2		1				1			1			
CO4	3	2	2		1				1			1			
CO5	3	2	2		1				1			1			

Note: 1-Low mapped, 2-Medium mapped, 3-High mapped

Module-1 : Definite Integral and Improper Integral.

Introduction to Integral Calculus in Computer Science Engineering applications.

Multiple Integrals: Evaluation of double and triple integrals, evaluation of double integrals by change of order of integration, changing into polar coordinates. Applications to find: Area by double integral. Problems.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions. Problems.

Self-Study: Volume by triple integration, Center of gravity.

Applications: Applications to mathematical quantities (Area, Surface area, Volume),. Analysis of probabilistic models.

(RBT Levels: L1, L2 and L3)

Module-2 : Advanced Linear Algebra

(8 hours)

Importance of Vector Space and Linear Transformations in the field of Computer science and engineering applications.

Vector spaces: Definition and examples, subspace, linear span, Linearly independent and dependent sets, Basis and dimension.

Linear transformations: Definition and examples, Algebra of transformations, Matrix of a linear transformation.

Self-study: Change of coordinates, Rank and nullity of a linear operator, Rank-Nullity theorem. Inner product spaces and orthogonality. Angles and Projections. Rotation, reflection, contraction and expansion.

Applications: Image processing, AI & ML, Graphs and networks, computer graphics. (RBT Levels: L1, L2 and L3)

(8 hours)

Module - 3: Numerical Methods

Importance of numerical methods for discrete data in the field of Computer science and engineering applications.

Solution of polynomial and transcendental equations: Regula-Falsi method and Newton-Raphson method (only formulae). Problems.

Finite differences, Interpolation using Newton's forward and backward difference formulae, Newton's divided difference formula and Lagrange's interpolation formula (All formulae without proof). Problems. **Self Study:** Bisection Method, Secant method, Numerical differentiation and Inverse Lagrange's method. **Applications:** Power Systems

(RBT Levels: L1, L2 and L3)

Module - 4 : Laplace Transforms

(8 hours)

Introduction to Laplace Transforms in Computer Science & Engineering. Laplace Transforms: Definition, Laplace transforms of Elementary function

Laplace Transforms: Definition, Laplace transforms of Elementary functions, properties (without proof) periodic function, Unit step function, Unit impulse function.

Inverse Laplace Transforms: Definition, Illustrative examples on Laplace transform, Convolution Theorem (without proof) and Finding Inverse Laplace transform by convolution Theorem. Solution of Linear Differential equations using Laplace Transforms and Applications (5 Assignment Problem).

Self-Study: Solution of first order simultaneous differential equation and Laplace transform of derivative.

Applications: Network analysis, Signal Processing, and Image Processing. (RBT Levels: L1, L2 and L3)

(8 hours)

Module-5 : Ordinary Differential Equation-2

Introduction to Linear ordinary differential equations of second and Higher order for handling Computer Science and Engineering applications.

Solution of second and higher order Ordinary Linear Differential Equations with constant coefficients, Inverse Differential Operator Method (Types -I, II and III only), Variation of Parameters method, applications of Differential equations LCR Circuits.

Self-Study: Singular Solutions and Inverse Differential Operator Method (Types -IV and V).

Applications: Application of second order ODE, initial conditions and initial value problems.

(RBT Levels: L1, L2 and L3)

(8 hours)

List of Laboratory experiments (2 hours/week per batch/ batch strength 15) 10 lab sessions + 1 repetition class + 1 Lab Assessment

- 1 Evaluation of Double and triple integrals.
- 2 Evaluation of Beta and Gamma functions.
- 3 Finding surface integrals
- 4 Evaluation of surface area by Green's theorem.
- 5 Formation of PDE w.r.t. one independent variable.
 - 6 Solution of PDE by direct integration.
 - 7 Newton's forward and Backward interpolation formula.
 - 8 Solution of numerical integration by Simpson's (1/3)rd rule.
 - 9 Finding the roots for second order ODE.

10 Finding the roots by the method of variation of parameter. Suggested software's : Mathematica/MatLab/Python/Scilab

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing marks for the CIE is 45% of the maximum marks (22.5 marks out of 50). The minimum passing marks for the SEE is 35% of the maximum marks (18 marks out of 50).

A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 35% (18 Marks out of 50) in the semester-end examination (SEE), and a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation(CIE):

The CIE shall be conducted by the course teacher throughout the semester. The CIE marks for the theory component of the IC shall be 30 marks and for the laboratory component 20 Marks.

The CIE marks for the theory component shall be 50 marks and scored will be reduced to 30.As below

- Three Tests each of 15 Marks; after the completion of the syllabus of 35-40%, 65-70%, and 90-100% respectively. Average of Best Two performances of the Internal Tests shall be considered for 15 Marks.
- Session wise assignments for 25 marks
- For Seminar and library work 05 marks
- Attendance 5 marks (95% to 100%), 04 marks (85% to 94%)

CIE for the practical component of the IC:

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The 35 marks are for conducting the experiment and preparation of the laboratory record, the other 15 marks shall be for the test conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 50 marks. Marks of all experiments' write-ups are added and scaled down to 20 marks.

Semester End Examination(SEE)

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question carries 20 marks.
- 4. There will be two full questions (with a maximum of three sub questions) from each module
- 5. Each full question will have sub questions covering all the topics under a module.
- 6. The students will have to answer five full questions, selecting one full question from each module.

SuggestedLearningResources:

Books (Title of the Book/Name of the author/Name of the publisher/Edition and Year)Text Books

1. B.S.Grewal: "Higher Engineering, Mathematics", Khanna publishers, 44th Ed., 2021.

2. E. Kreyszig: "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2018.

Reference Books

- 1. V.Ramana:"Higher Engineering Mathematics" McGraw-Hill Education,11th Ed.,2017
- 2. Srimanta Pal & Subodh C. Bhunia: "Engineering Mathematics" Oxford University Press, 3rdEd., 2016.
- 3. **N.PBali and Manish Goyal**: "A textbook of Engineering Mathematics" Laxmi Publications, 10th Ed., 2022.
- 4. **C.Ray Wylie, Louis C. Barrett:** "Advanced Engineering Mathematics" McGraw-Hill Book Co., New york, 6thEd., 2017.
- 5. **C.B Gupta, S. R Singh and Mukesh Kumar:** "Engineering Mathematic for Semester I and II", Mc-Graw Hill Education (India)Pvt.Ltd 2015.
- 6. **H.K.Dass and Er.Rajnish Verma:** "Higher Engineering Mathematics" S.Chand Publication, 3rdEd., 2014.
- 7. James Stewart: "Calculus" Cengage Publications, 7thEd., 2019.
- 8. David CLay: "Linear Algebra and its Applications", Pearson Publishers, 4th Ed., 2018.
- 9. Gareth Williams: "Linear Algebra with applications", Jones Bartlett Publishers Inc., 6thEd., 2017.